600 12.CONTINUOUSLATENTVARIABLES
theeigenvectorsofS.Becausethesesolutionsareallequivalent,itisconvenientto
choosetheeigenvectorsolution.12.3 (*) Verifythattheeigenvectorsdefinedby(12.30)arenormalizedtounitlength,
assumingthattheeigenvectorsVihaveunitlength.12.4 (*)Imm Supposewereplacethezero-mean,unit-covariancelatentspacedistri-
bution(12.31)intheprobabilisticPCAmodelbya generalGaussiandistributionof
theformN(zlm,~).Byredefiningtheparametersofthemodel,showthatthisleads
toanidenticalmodelforthemarginaldistributionp(x)overtheobservedvariables
foranyvalidchoiceofmand~.12.5 (**) Letxbea D-dimensionalrandomvariablehavinga Gaussiandistribution
givenbyN(xIJL,~),andconsidertheM-dimensionalrandomvariablegivenby
y = Ax+b whereAisanM xD matrix. Showthaty alsohasa Gaussian
distribution,andfindexpressionsforitsmeanandcovariance.DiscusstheformofthisGaussiandistributionforM <D,forM= D,andforM>D.
12.6 (*)Imm Drawa directedprobabilisticgraphfortheprobabilisticPCAmodel
describedinSection12.2inwhichthecomponentsoftheobservedvariablex are
shownexplicitlyasseparatenodes.HenceverifythattheprobabilisticPCAmodel
hasthesameindependencestructureasthenaiveBayesmodeldiscussedinSec-
tion8.2.2.12.7 (**) Bymakinguseoftheresults(2.270)and(2.271)forthemeanandcovariance
ofa generaldistribution,derivetheresult(12.35)forthemarginaldistributionp(x)
intheprobabilisticPCAmodel.12.8 (**)Imm Bymakinguseoftheresult(2.116),showthattheposteriordistribution
p(zlx)fortheprobabilisticPCAmodelis givenby(12.42).12.9 (*) Verifythatmaximizingtheloglikelihood(12.43)fortheprobabilisticPCAmodelwithrespecttotheparameterJLgivestheresultJLML = xwherexisthe
meanofthedatavectors.12.10 (**) Byevaluatingthesecondderivativesoftheloglikelihoodfunction(12.43)for
theprobabilisticPCAmodelwithrespecttotheparameterJL,showthatthestationarypointJLML= xrepresentstheuniquemaximum.
12.11 (**)Imm Showthatinthelimit(Y2-.0,theposteriormeanfortheprobabilistic
PCAmodelbecomesanorthogonalprojectionontotheprincipalsubspace,asin
conventionalPCA.12.12 (**) For(Y2 >0 showthattheposteriormeanintheprobabilisticPCAmodelis
shiftedtowardstheoriginrelativetotheorthogonalprojection.12.13 (**) Showthattheoptimalreconstructionofa datapointunderprobabilisticPCA,
accordingtotheleastsquaresprojectioncostofconventionalPCA,is givenby(12.94)