Pattern Recognition and Machine Learning

(Jeff_L) #1

600 12.CONTINUOUSLATENTVARIABLES


theeigenvectorsofS.Becausethesesolutionsareallequivalent,itisconvenientto
choosetheeigenvectorsolution.

12.3 (*) Verifythattheeigenvectorsdefinedby(12.30)arenormalizedtounitlength,
assumingthattheeigenvectorsVihaveunitlength.

12.4 (*)Imm Supposewereplacethezero-mean,unit-covariancelatentspacedistri-
bution(12.31)intheprobabilisticPCAmodelbya generalGaussiandistributionof
theformN(zlm,~).Byredefiningtheparametersofthemodel,showthatthisleads
toanidenticalmodelforthemarginaldistributionp(x)overtheobservedvariables
foranyvalidchoiceofmand~.

12.5 (**) Letxbea D-dimensionalrandomvariablehavinga Gaussiandistribution
givenbyN(xIJL,~),andconsidertheM-dimensionalrandomvariablegivenby
y = Ax+b whereAisanM xD matrix. Showthaty alsohasa Gaussian
distribution,andfindexpressionsforitsmeanandcovariance.Discusstheformof

thisGaussiandistributionforM <D,forM= D,andforM>D.


12.6 (*)Imm Drawa directedprobabilisticgraphfortheprobabilisticPCAmodel
describedinSection12.2inwhichthecomponentsoftheobservedvariablex are
shownexplicitlyasseparatenodes.HenceverifythattheprobabilisticPCAmodel
hasthesameindependencestructureasthenaiveBayesmodeldiscussedinSec-
tion8.2.2.

12.7 (**) Bymakinguseoftheresults(2.270)and(2.271)forthemeanandcovariance
ofa generaldistribution,derivetheresult(12.35)forthemarginaldistributionp(x)
intheprobabilisticPCAmodel.

12.8 (**)Imm Bymakinguseoftheresult(2.116),showthattheposteriordistribution
p(zlx)fortheprobabilisticPCAmodelis givenby(12.42).

12.9 (*) Verifythatmaximizingtheloglikelihood(12.43)fortheprobabilisticPCA

modelwithrespecttotheparameterJLgivestheresultJLML = xwherexisthe


meanofthedatavectors.

12.10 (**) Byevaluatingthesecondderivativesoftheloglikelihoodfunction(12.43)for
theprobabilisticPCAmodelwithrespecttotheparameterJL,showthatthestationary

pointJLML= xrepresentstheuniquemaximum.


12.11 (**)Imm Showthatinthelimit(Y2-.0,theposteriormeanfortheprobabilistic
PCAmodelbecomesanorthogonalprojectionontotheprincipalsubspace,asin
conventionalPCA.

12.12 (**) For(Y2 >0 showthattheposteriormeanintheprobabilisticPCAmodelis


shiftedtowardstheoriginrelativetotheorthogonalprojection.

12.13 (**) Showthattheoptimalreconstructionofa datapointunderprobabilisticPCA,
accordingtotheleastsquaresprojectioncostofconventionalPCA,is givenby

(12.94)
Free download pdf