13.3. Linear Dynamical Systems 643
μnew 0 = E[z 1 ] (13.110)
Vnew 0 = E[z 1 zT 1 ]−E[z 1 ]E[zT 1 ]. (13.111)
Similarly, to optimizeAandΓ, we substitute forp(zn|zn− 1 ,A,Γ)in (13.108)
using (13.75) giving
Q(θ,θold)=−
N− 1
2
ln|Γ|
−EZ|θold
[
1
2
∑N
n=2
(zn−Azn− 1 )TΓ−^1 (zn−Azn− 1 )
]
+const (13.112)
in which the constant comprises terms that are independent ofAandΓ. Maximizing
Exercise 13.33 with respect to these parameters then gives
Anew =
(N
∑
n=2
E
[
znzTn− 1
]
)(N
∑
n=2
E
[
zn− 1 zTn− 1
]
)− 1
(13.113)
Γnew =
1
N− 1
∑N
n=2
{
E
[
znzTn
]
−AnewE
[
zn− 1 zTn
]
−E
[
znzTn− 1
]
Anew+AnewE
[
zn− 1 zTn− 1
]
(Anew)T
}
. (13.114)
Note thatAnewmust be evaluated first, and the result can then be used to determine
Γnew.
Finally, in order to determine the new values ofCandΣ, we substitute for
p(xn|zn,C,Σ)in (13.108) using (13.76) giving
Q(θ,θold)=−
N
2
ln|Σ|
−EZ|θold
[
1
2
∑N
n=1
(xn−Czn)TΣ−^1 (xn−Czn)
]
+const.
Exercise 13.34 Maximizing with respect toCandΣthen gives
Cnew =
(N
∑
n=1
xnE
[
zTn
]
)(N
∑
n=1
E
[
znzTn
]
)− 1
(13.115)
Σnew =
1
N
∑N
n=1
{
xnxTn−CnewE[zn]xTn
−xnE
[
zTn
]
Cnew+CnewE
[
znzTn
]
Cnew
}
. (13.116)