REFERENCES 717
Gamerman, D. (1997).Markov Chain Monte Carlo:
Stochastic Simulation for Bayesian Inference.
Chapman and Hall.
Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Ru-
bin (2004).Bayesian Data Analysis(Second ed.).
Chapman and Hall.
Geman, S. and D. Geman (1984). Stochastic re-
laxation, Gibbs distributions, and the Bayesian
restoration of images.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 6 (1),
721–741.
Ghahramani, Z. and M. J. Beal (2000). Variational
inference for Bayesian mixtures of factor ana-
lyzers. In S. A. Solla, T. K. Leen, and K. R.
Muller (Eds.), ̈ Advances in Neural Information
Processing Systems, Volume 12, pp. 449–455.
MIT Press.
Ghahramani, Z. and G. E. Hinton (1996a). The
EM algorithm for mixtures of factor analyzers.
Technical Report CRG-TR-96-1, University of
Toronto.
Ghahramani, Z. and G. E. Hinton (1996b). Param-
eter estimation for linear dynamical systems.
Technical Report CRG-TR-96-2, University of
Toronto.
Ghahramani, Z. and G. E. Hinton (1998). Variational
learning for switching state-space models.Neu-
ral Computation 12 (4), 963–996.
Ghahramani, Z. and M. I. Jordan (1994). Super-
vised learning from incomplete data via an EM
appproach. In J. D. Cowan, G. T. Tesauro, and
J. Alspector (Eds.),Advances in Neural Informa-
tion Processing Systems, Volume 6, pp. 120–127.
Morgan Kaufmann.
Ghahramani, Z. and M. I. Jordan (1997). Factorial
hidden Markov models.Machine Learning 29 ,
245–275.
Gibbs, M. N. (1997).Bayesian Gaussian processes
for regression and classification. Phd thesis, Uni-
versity of Cambridge.
Gibbs, M. N. and D. J. C. MacKay (2000). Varia-
tional Gaussian process classifiers.IEEE Trans-
actions on Neural Networks 11 , 1458–1464.
Gilks, W. R. (1992). Derivative-free adaptive
rejection sampling for Gibbs sampling. In
J. Bernardo, J. Berger, A. P. Dawid, and A. F. M.
Smith (Eds.),Bayesian Statistics, Volume 4. Ox-
ford University Press.
Gilks, W. R., N. G. Best, and K. K. C. Tan (1995).
Adaptive rejection Metropolis sampling.Applied
Statistics 44 , 455–472.
Gilks, W. R., S. Richardson, and D. J. Spiegelhal-
ter (Eds.) (1996).Markov Chain Monte Carlo in
Practice. Chapman and Hall.
Gilks, W. R. and P. Wild (1992). Adaptive rejection
sampling for Gibbs sampling. Applied Statis-
tics 41 , 337–348.
Gill, P. E., W. Murray, and M. H. Wright (1981).
Practical Optimization. Academic Press.
Goldberg, P. W., C. K. I. Williams, and C. M.
Bishop (1998). Regression with input-dependent
noise: A Gaussian process treatment. InAd-
vances in Neural Information Processing Sys-
tems, Volume 10, pp. 493–499. MIT Press.
Golub, G. H. and C. F. Van Loan (1996).Matrix
Computations(Third ed.). John Hopkins Univer-
sity Press.
Good, I. (1950).Probability and the Weighing of Ev-
idence. Hafners.
Gordon, N. J., D. J. Salmond, and A. F. M. Smith
(1993). Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. IEE
Proceedings-F 140 (2), 107–113.
Graepel, T. (2003). Solving noisy linear operator
equations by Gaussian processes: Application
to ordinary and partial differential equations. In
Proceedings of the Twentieth International Con-
ference on Machine Learning, pp. 234–241.
Greig, D., B. Porteous, and A. Seheult (1989). Ex-
act maximum a-posteriori estimation for binary
images.Journal of the Royal Statistical Society,
Series B 51 (2), 271–279.
Gull, S. F. (1989). Developments in maximum en-
tropy data analysis. In J. Skilling (Ed.),Maxi-
mum Entropy and Bayesian Methods, pp. 53–71.
Kluwer.