Pattern Recognition and Machine Learning

(Jeff_L) #1
REFERENCES 719

Jaakkola, T. and M. I. Jordan (2000). Bayesian
parameter estimation via variational methods.
Statistics and Computing 10 , 25–37.


Jaakkola, T. S. (2001). Tutorial on variational ap-
proximation methods. In M. Opper and D. Saad
(Eds.),Advances in Mean Field Methods, pp.
129–159. MIT Press.


Jaakkola, T. S. and D. Haussler (1999). Exploiting
generative models in discriminative classifiers. In
M. S. Kearns, S. A. Solla, and D. A. Cohn (Eds.),
Advances in Neural Information Processing Sys-
tems, Volume 11. MIT Press.


Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E.
Hinton (1991). Adaptive mixtures of local ex-
perts.Neural Computation 3 (1), 79–87.


Jaynes, E. T. (2003).Probability Theory: The Logic
of Science. Cambridge University Press.


Jebara, T. (2004).Machine Learning: Discrimina-
tive and Generative. Kluwer.


Jeffries, H. (1946). An invariant form for the prior
probability in estimation problems.Pro. Roy.
Soc. AA 186 , 453–461.


Jelinek, F. (1997).Statistical Methods for Speech
Recognition. MIT Press.


Jensen, C., A. Kong, and U. Kjaerulff (1995). Block-
ing gibbs sampling in very large probabilistic
expert systems.International Journal of Human
Computer Studies. Special Issue on Real-World
Applications of Uncertain Reasoning. 42 , 647–
666.


Jensen, F. V. (1996).An Introduction to Bayesian
Networks. UCL Press.


Jerrum, M. and A. Sinclair (1996). The Markov
chain Monte Carlo method: an approach to ap-
proximate counting and integration. In D. S.
Hochbaum (Ed.),Approximation Algorithms for
NP-Hard Problems. PWS Publishing.


Jolliffe, I. T. (2002).Principal Component Analysis
(Second ed.). Springer.


Jordan, M. I. (1999).Learning in Graphical Models.
MIT Press.


Jordan, M. I. (2007).An Introduction to Probabilis-
tic Graphical Models. In preparation.
Jordan, M. I., Z. Ghahramani, T. S. Jaakkola, and
L. K. Saul (1999). An introduction to variational
methods for graphical models. In M. I. Jordan
(Ed.),Learning in Graphical Models, pp. 105–


  1. MIT Press.
    Jordan, M. I. and R. A. Jacobs (1994). Hierarchical
    mixtures of experts and the EM algorithm.Neu-
    ral Computation 6 (2), 181–214.
    Jutten, C. and J. Herault (1991). Blind separation of
    sources, 1: An adaptive algorithm based on neu-
    romimetic architecture.Signal Processing 24 (1),
    1–10.
    Kalman, R. E. (1960). A new approach to linear fil-
    tering and prediction problems.Transactions of
    the American Society for Mechanical Engineer-
    ing, Series D, Journal of Basic Engineering 82 ,
    35–45.
    Kambhatla, N. and T. K. Leen (1997). Dimension
    reduction by local principal component analysis.
    Neural Computation 9 (7), 1493–1516.
    Kanazawa, K., D. Koller, and S. Russel (1995).
    Stochastic simulation algorithms for dynamic
    probabilistic networks. InUncertainty in Artifi-
    cial Intelligence, Volume 11. Morgan Kaufmann.
    Kapadia, S. (1998).Discriminative Training of Hid-
    den Markov Models. Phd thesis, University of
    Cambridge, U.K.
    Kapur, J. (1989).Maximum entropy methods in sci-
    ence and engineering. Wiley.
    Karush, W. (1939). Minima of functions of several
    variables with inequalities as side constraints.
    Master’s thesis, Department of Mathematics,
    University of Chicago.
    Kass, R. E. and A. E. Raftery (1995). Bayes fac-
    tors.Journal of the American Statistical Associ-
    ation 90 , 377–395.
    Kearns, M. J. and U. V. Vazirani (1994).An Intro-
    duction to Computational Learning Theory.MIT
    Press.

Free download pdf