Nature - USA (2020-01-16)

(Antfer) #1

358 | Nature | Vol 577 | 16 January 2020


Article


diamagnetic material), and also that in some systems it is possible for
one of the eutectic phases to be selectively etched and replaced with
a different material^13.


Online content


Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-019-1893-9.



  1. Braun, P. V., Osenar, P. & Stupp, S. I. Semiconducting superlattices templated by
    molecular assemblies. Nature 380 , 325–328 (1996).

  2. Tavakkoli, K. G. A. et al. Templating three-dimensional self-assembled structures in bilayer
    block copolymer films. Science 336 , 1294–1298 (2012).

  3. Wu, Y. et al. Composite mesostructures by nano-confinement. Nat. Mater. 3 , 816–822
    (2004).

  4. Tavakkoli, K. G. A. et al. Rectangular symmetry morphologies in a topographically
    templated block copolymer. Adv. Mater. 24 , 4249–4254 (2012).

  5. Urgel, J. I. et al. Quasicrystallinity expressed in two-dimensional coordination networks.
    Nat. Chem. 8 , 657–662 (2016).

  6. Grünbaum, B. & Shephard, G. C. Tilings by regular polygons. Math. Mag. 50 , 227–247
    (1977).

  7. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13 , 139–150 (2014).

  8. Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale
    ferromagnetic islands. Nature 439 , 303–306 (2006); addendum 446, 102 (2007).

  9. Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of
    magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 6 , 359–363 (2010).

  10. Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334 , 962–965 (2011).

  11. Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional
    ceramic nanolattices. Science 345 , 1322–1326 (2014).

  12. Pawlak, D. A. et al. How far are we from making metamaterials by self-organization? The
    microstructure of highly anisotropic particles with an SRR-like geometry. Adv. Funct.
    Mater. 20 , 1116–1124 (2010).

  13. Acosta, M. F., Rodrigo, S. G., Martín-Moreno, L., Pecharromán, C. & Merino, R. I. Micropillar
    templates for dielectric filled metal arrays and flexible metamaterials. Adv. Opt. Mater. 5 ,
    1600670 (2017).

  14. Sadecka, K. et al. When eutectics meet plasmonics: nanoplasmonic, volumetric, self-
    organized, silver-based eutectic. Adv. Opt. Mater. 3 , 381–389 (2015).
    15. Bei, H., Pharr, G. & George, E. A review of directionally solidified intermetallic composites
    for high-temperature structural applications. J. Mater. Sci. 39 , 3975–3984 (2004).
    16. Wysmulek, K. et al. A SrTiO 3 -TiO 2 eutectic composite as a stable photoanode material for
    photoelectrochemical hydrogen production. Appl. Catal. B 206 , 538–546 (2017).
    17. Jackson, K. & Hunt, J. Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236 ,
    1129–1142 (1966).
    18. Himemiya, T. & Umeda, T. Three-phase planar eutectic growth models for a ternary
    eutectic system. Mater. Trans. JIM 40 , 665–674 (1999).
    19. Choudhury, A., Plapp, M. & Nestler, B. Theoretical and numerical study of lamellar
    eutectic three-phase growth in ternary alloys. Phys. Rev. E 83 , 051608 (2011).
    20. Dennstedt, A. & Ratke, L. Microstructures of directionally solidified Al–Ag–Cu ternary
    eutectics. Trans. Indian Inst. Met. 65 , 777–782 (2012).
    21. Akamatsu, S. & Plapp, M. Eutectic and peritectic solidification patterns. Curr. Opin. Solid
    State Mater. Sci. 20 , 46–54 (2016).
    22. Boley, J. W. et al. High-operating-temperature direct ink writing of mesoscale eutectic
    architectures. Adv. Mater. 29 , 1604778 (2017).
    23. Choi, J. et al. Processing-dependent microstructure of AgCl–CsAgCl 2 eutectic photonic
    crystals. Adv. Opt. Mater. 6 , 1701316 (2018).
    24. Darling, S. B. Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32 ,
    1152–1204 (2007).
    25. Ouk Kim, S. et al. Epitaxial self-assembly of block copolymers on lithographically defined
    nanopatterned substrates. Nature 424 , 411–414 (2003).
    26. Shin, D. O. et al. Multicomponent nanopatterns by directed block copolymer self-
    assembly. ACS Nano 7 , 8899–8907 (2013).
    27. Choi, Y. J. et al. Hierarchical directed self-assembly of diblock copolymers for modified
    pattern symmetry. Adv. Funct. Mater. 26 , 6462–6470 (2016).
    28. Jung, H. et al. Hierarchical multi-level block copolymer patterns by multiple self-
    assembly. Nanoscale 11 , 8433–8441 (2019).
    29. Ding, Y. et al. Emergent symmetries in block copolymer epitaxy. Nat. Commun. 10 , 2974
    (2019).
    30. Kulkarni, A. A. et al. Template-directed solidification of eutectic optical materials. Adv.
    Opt. Mater. 6 , 1800071 (2018).
    31. Kim, J. et al. Template-directed directionally solidified 3D mesostructured AgCl-KCl
    eutectic photonic crystals. Adv. Mater. 27 , 4551–4559 (2015).
    32. Kulkarni, A. A., Kohanek, J., Hanson, E., Thornton, K. & Braun, P. V. Control of lamellar
    eutectic orientation via template-directed solidification. Acta Mater. 166 , 715–722 (2019).
    33. Yan, Z. et al. Three-dimensional mesostructures as high-temperature growth templates,
    electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl Acad. Sci. USA
    114 , E9455–E9464 (2017).


Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020
Free download pdf