§- ImmediateCorollariesoftheAxioms 7
P(AB)=P(A)PA(B). (6)And byinductionweobtainthegeneralformula (theMulti-plicationTheorem)P(A1A2...An)=
P(Al)PAl(A2)PAlAAA
3)...PAlA
2...A
n- l
(An).(7)Thefollowingtheoremsfolloweasily:P4(5)g0,(8)PA(E)=1,(9)PAB+C)=?AB)+?AC).(10)Comparingformulae (8)—
(10)withaxiomsIII—
V,wefindthatthesystem
$
ofsetstogetherwiththesetfunctionP
A(B) (pro-videdAisafixedset),formafieldofprobabilityandtherefore,alltheabovegeneraltheoremsconcerningP(B) holdtruefortheconditionalprobability PA(B) (provided theevent A is fixed).ItisalsoeasytoseethatP^(A)=1. (11)From (6) andtheanalogousformulaP (AB)=P(B)PB(A)weobtaintheimportantformula:PB{A)=^m,
(12)whichcontains, inessence,theTheoremofBayes.TheTheorem
onTotalProbability:
LetA1+A
2+..
.+A
n—
E(thisassumesthattheeventsA
lfA
2J..
.,A
naremutuallyexclusive)andletXbearbitrary.ThenP(X)=PiAJPAl(X)
+P(A2)PAt(X)
+...+P(An)PAn(X).-
(13)Proof:X=
AiX+A
2X+.
..+A„X;using
(4) wehaveP(X)=P(A
1X)+P(A
2X)+...+P(A„X)andaccordingto
(6)wehaveatthesametimeP(AiX)=P(A
i)PAt(X).TheTheorem of Bayes: Let
A
1+A2+...
+An=
E andX
bearbitrary,thenp (A,PWP^X)x(*PiAJP^W+P(A2)PA,(X)
+ +P(An)PA„(X)'(
>i=
1,2,3,....,».