§5.Independence 9Bernsteinisactuallydedicatedtothefundamental investigationof seriesof independent random variables. Though the latestdissertations (Markov,Bernsteinandothers) frequentlyfailtoassume completeindependence, they nevertheless reveal thenecessityofintroducinganalogous,weaker,conditions,inordertoobtainsufficientlysignificant
results (seeinthischapter
§6,Markovchains).Wethussee,intheconceptofindependence,atleastthegermofthe peculiar type of problem inprobability theory. Inthisbook, however, we shall not stressthat fact, for here we are
interested mainly inthe logical foundationfor the specializedinvestigationsofthetheoryofprobability.Inconsequence, oneof themost important problemsinthephilosophy of thenatural sciences is—inaddition tothe well-
knownoneregardingthe essence oftheconcept ofprobability
itself—to
makeprecisethepremiseswhichwouldmakeit
possibletoregard anygiven realevents asindependent. Thisquestion,
however,isbeyondthescopeofthisbook.
Letusturntothedefinitionofindependence.Givennexperi-ments
5l
(1),5l(2),...
,5lU),thatis,ndecompositionsE=
Af
+A$]+hA1*}
i=\,2,...,nofthebasicsetE.Itisthenpossibletoassignr
=
r
1r
2...r
nproba-bilities (inthegeneralcase)
P^...qn=P(A(q\)A%;..
A{qnJ)^0whichareentirelyarbitraryexceptforthesinglecondition
7that2 Ah<? 8 ...«»
= 1(!)Definition I. nexperiments 3i(1),5l(2),...
,
3l(n>
arecalledmutually independent, iffor any
q
l9
q2 ,...
, qnthefollowingequationholdstrue:p(4>4?•••O
=p
«>)p(4?)- • p(4:') • (2)
7Onemayconstructafieldofprobabilitywitharbitraryprobabilitiessub-jectonlytotheabove-mentionedconditions,asfollows:Eiscomposedofr
elements
£«,qt
.
..
qn. Let the corresponding elementary probabilities be
PqiQt...in>andfinallylet Aqi]bethesetofall
£
f/l9, tm.9mforwhich<7t=
q-