Foundations of the theory of probability

(Jeff_L) #1
§5.

Independence 9

Bernsteinisactuallydedicatedtothefundamental investigation

of series

of independent random variables. Though the latest

dissertations (Markov,

Bernsteinandothers) frequentlyfailto

assume complete

independence, they nevertheless reveal the

necessityofintroducinganalogous,

weaker,conditions,inorder

toobtainsufficiently

significant
results (see

inthischapter
§6,

Markovchains)

.

Wethussee,intheconceptofindependence,atleastthegerm

ofthe peculiar type of problem inprobability theory. Inthis

book, however, we shall not stressthat fact, for here we are


interested mainly inthe logical foundationfor the specialized

investigationsofthetheoryofprobability.

Inconsequence, oneof themost important problemsinthe

philosophy of thenatural sciences is—inaddition tothe well-

knownoneregardingthe essence oftheconcept ofprobability


itself—to

makeprecisethepremiseswhichwouldmakeit
possible

toregard anygiven realevents asindependent. Thisquestion,


however,isbeyondthescopeofthisbook.


Letusturntothedefinitionofindependence.Givennexperi-

ments
5l


(1)

,5l

(2)

,

...
,5l

U)

,

thatis,ndecompositions

E

=
Af
+

A$

]

+

h

A

1

*}
i=\,2,...,n

ofthebasicsetE.Itisthenpossibletoassignr


=
r
1

r
2

...r
n

proba-

bilities (inthegeneralcase)


P^...qn

=P(A

(

q\

)

A%;..
A

{

q

n

J)^0

whichareentirelyarbitraryexceptforthesinglecondition


7

that

2 Ah<? 8 ...«»

= 1





(!)

Definition I. nexperiments 3i

(1)

,

5l

(2)

,

...
,


3l

(n

>
arecalled

mutually independent, iffor any
q


l9
q

2 ,

...


, q

n

thefollowing

equationholdstrue

:

p(4>4?•••

O


=

p
«>)p

(4?)


  • • p(4:') • (2)


7

Onemayconstructafieldofprobabilitywitharbitraryprobabilitiessub-

jectonlytotheabove-mentionedconditions,asfollows:Eiscomposedofr


elements
£«,qt


.
..
q

n

. Let the corresponding elementary probabilities be


PqiQt...in>

andfinallylet A

q

i]

bethesetofall
£
f/l9, tm

.

9m

forwhich

<7t

=
q-
Free download pdf