§
- NotesontheConceptofMathematical
Expectation
65
asageneralizedmathematical expectation.Welosein thiscase,
ofcourse,severalsimplepropertiesofmathematicalexpectation.
Forexample, inthiscasetheformula
E(s+
y)
=
E(x) +E(y)
is not always true. In this form the generalization is hardly
admissible. We mayadd however that, with some restrictive
supplementaryconditions,definition
(2)
becomesentirelynatural
anduseful.
Wecandiscusstheproblemasfollows.Let
X\
t
X21•••
j
X
n,
•
beasequenceofmutuallyindependentvariables,havingthesame
distributionfunction F
(x
^(a)
=F
(Xn)
(a), (n
=
1, 2, ...
)
asx.
Letfurther
*1+*2H
1"
*n
We nowask whether there exists
a
constant E*
(x)
such that
for
everye>
limP(|s
n
-E*(*)|
><0=O, w^+cx). (3)
Theansweris :
//
suchaconstantE*(x)exists,itisexpressedby
Formula
(2).
The
necessaryandsufficientconditionthat
Formula
(3) holdconsistsintheexistenceof limit (2) andtherelation
P(|*|>n)-o(±). (4)
To prove this we applythe theoremthat condition
(4)
is
necessaryandsufficientforthestabilityofthearithmeticmeans
s„, where,inthecaseofstability, wemayset
6
+n
d
n
=jadF(
x
)(a).
—
n
Ifthereexistsamathematicalexpectationintheformersense
(Formula
(1)),
thencondition
(4)
isalwaysfulfilled
7
. Sincein
thiscase£(x)
=
E*(x),thecondition
(3)
actuallydoesdefinea
generalization oftheconcept ofmathematical expectation. For
the generalized mathematical
expectation,
Properties I-VII
8
Cf.
A.
Kolmogorov,Bemerkungenzumeiner
Arbeit,
"UberdieSummen
zufdlligerGrossen"Math.Ann.v.102,1929,pp.484-488,TheoremXII.
7
Ibid,TheoremXIII.