§- NotesontheConceptofMathematical
Expectation
65asageneralizedmathematical expectation.Welosein thiscase,
ofcourse,severalsimplepropertiesofmathematicalexpectation.
Forexample, inthiscasetheformula
E(s+
y)=
E(x) +E(y)is not always true. In this form the generalization is hardly
admissible. We mayadd however that, with some restrictive
supplementaryconditions,definition
(2)
becomesentirelynaturalanduseful.
Wecandiscusstheproblemasfollows.LetX\
tX21•••
jX
n,
•
beasequenceofmutuallyindependentvariables,havingthesame
distributionfunction F
(x^(a)=F(Xn)(a), (n=
1, 2, ...
)asx.Letfurther
*1+*2H1"
*nWe nowask whether there exists
a
constant E*
(x)such thatfor
everye>
limP(|sn-E*(*)|
><0=O, w^+cx). (3)Theansweris :
//suchaconstantE*(x)exists,itisexpressedbyFormula
(2).
The
necessaryandsufficientconditionthatFormula(3) holdconsistsintheexistenceof limit (2) andtherelationP(|*|>n)-o(±). (4)To prove this we applythe theoremthat condition
(4)isnecessaryandsufficientforthestabilityofthearithmeticmeanss„, where,inthecaseofstability, wemayset6+ndn=jadF(x)(a).—
nIfthereexistsamathematicalexpectationintheformersense(Formula
(1)),thencondition
(4)isalwaysfulfilled7. Sincein
thiscase£(x)=
E*(x),thecondition
(3)actuallydoesdefineageneralization oftheconcept ofmathematical expectation. Forthe generalized mathematical
expectation,Properties I-VII8Cf.A.
Kolmogorov,BemerkungenzumeinerArbeit,
"UberdieSummenzufdlligerGrossen"Math.Ann.v.102,1929,pp.484-488,TheoremXII.7Ibid,TheoremXIII.