§
5.StrongLawofLargeNumbers;ConvergenceofSeries 67
where the variables x
n
are mutuallyindependent. A sufficient
8
conditionforthenormalstrongstabilityofthearithmeticmeans
s
n
istheconvergenceoftheseries
2*P
(i)
n=l
Thisconditionisthebest
in
thesensethatforanyseriesofcon-
stantsb
n
suchthat
^
n=l
wecanbuildaseriesofmutuallyindependentrandomvariables
x
n
suchthat
andthe correspondingarithmeticmeanss
n
will
notbestrongly
stable.
Ifallx
n
havethesamedistributionfunctionF
(jr
>
(a),thenthe
existenceofthemathematicalexpectation
E(x)=jadFW(a)
—
oo
isnecessaryandsufficientfor
the
strong
stabilityofs
n
;thesta-
bilityinthis
caseisalwaysnormal
9
.
Again,let
*£l>
X>2)•••
)
X
nt
...
bemutuallyindependentrandomvariables.Thentheprobability
of convergenceoftheseries
fin
(2)
n=l
is equal
eitherto oneor tozero.Inparticular,thisprobability
equalsone whenbothseries
jjEfoJ
and
JSy-fo)
n=l n=l
converge. Letusfurtherassume
y
n
=
x
n
incase[x
n
\^l,
y
n
=
incase
|
x
n
\
>
1.
8
Cf.A.Kolmogorov/Surlaloifortedesgrandesnombres,C.R.Acad.Sci.
Parisv.
191,1930,pp.
910-911.
9
Theproofofthisstatementhasnotyetbeenpublished.