2.Sol:
So increased by^0
V
R
At t 0
1 2
dN
t
dt
on integrating
^12
0
loge
N
t
N
Given that
0 99
N N
N
N 0 100 N
10
2.3 log 10 100 5 10
N
t
N
(^) t 9.2 10^9 Year
3.Sol: dQ Cdt
where C is the heat capacity per unit mass
.
dQ dT
C
dt dt
0 3/
1
4
P C T t
3/
0
4
.
P
t C
T
Now T T T t 0 0 1/
^
3
3/4 0
0
T T
t
T
(^)
3
0
4 4
0
4 (P T T)
C
T
4.Sol: Let M is the mass of the sphere having
radius r
2
2
GMm mv
r r
^2
2 1
2
mv
r
^2
GMm K 2 2 Kr
M
r r Gm
^
dM^2 Kdr 4 r dr^22 Kdr
Gm Gm
2 2
K
Gmr
(^) 2 2
2
K
m Gm r
SECTION-
1.Sol: Given that [ ] [M Mass M LT ] [ 0 0^0 ]
[J] = [Angular momentum] [ML T^2 ^1 ]
[ ] [Length]L
Now; [M L T0 2 ^1 ] [Dimensionless quantity]
^ [ ] [ ]L T^2
Power [P] = [M LT LT^0 ^2. ^1 ]
[M L T0 2 ^3 ]
[ ] [ ]P L ^4
Energy = [M LT L^0 ^2 ]
[L L^2 ^4 ][ ]L^2
Force [F] [ ] [F M LT^0 ^2 ] [. ] [ ] L L^4 L^3
Linear momentum [ ] [p M LT^0 ^1 ] [. ] L L^2
[ ] [ ]p L ^1
2.Sol:
2.Sol:
3.Sol:
4.Sol:
SECTION-
1.Sol:
2.Sol:
(^) V 100 10^3 V 10 ^1 V
V I R R g( g V)