194 From Classical Mechanics to Quantum Field Theory. A Tutorial
The solution of Eq. (3.4) in terms of the initial Cauchy conditions (x(0),x ̇(0)) is
x(t)=x(0) cosωt+x ̇(0)
ωsinωt=
1
2
[
x(0) +ix ̇(0)
ω]
e−iωt+1
2
[
x(0)−ix ̇(0)
ω]
eiωt. (3.5)Upon Legendre transformation
p=mx, ̇and the Poisson bracket structure,
{x, x}={p, p}=0; {x, p}= 1 (3.6)one obtains the Hamiltonian of the harmonic oscillator
H=1
2 mp^2 +1
2
mω^2 x^2 ,and the corresponding Hamilton equations of motion
x ̇={x, H}=p
m, p ̇={p, H}=−mω^2 x,that are equivalent to Newton’s equations Eq. (3.4).
In field theory, it is very convenient to use the coherent variables
a=√
mω
2x+i
√
2 mωp; a∗=√
mω
2x−i
√
2 mωp,in terms of which time evolution becomes
a(t)=a(0)e−iωt,which gives Eq. (3.5),
x(t)=√^1
2 mω(a(t)+a∗(t))=√^1
2 mω(
a(0)e−iωt+a∗(0)eiωt)
.
The Quantum Harmonic Oscillator
The canonical quantization prescription proceeds by mapping the classical ob-
servables, positionxand momentumpinto selfadjoint operators ˆxand ˆpof a
Hilbert spaceHand replacing the Poisson bracket{·.·}by the operators commu-
tator−i[·,·], i.e.
{x, p}=1⇒[ˆx,pˆ]=iI, (3.7)where we assume that the Planck constant=1.