- M. Fericet al., Coexisting liquid phases underlie nucleolar
subcompartments.Cell 165 , 1686–1697 (2016).
doi:10.1016/j.cell.2016.04.047;pmid:27212236 - X. Suet al., Phase separation of signaling molecules
promotes T cell receptor signal transduction.Science 352 ,
595 – 599 (2016). doi:10.1126/science.aad9964;
pmid: 27056844 - J. T. Wanget al., Regulation of RNA granule dynamics by
phosphorylation of serine-rich, intrinsically disordered proteins
in C. elegans.eLife 3 , e04591 (2014). doi:10.7554/eLife.04591;
pmid: 25535836 - A. Molliexet al., Phase separation by low complexity domains
promotes stress granule assembly and drives pathological
fibrillization.Cell 163 , 123–133 (2015). doi:10.1016/
j.cell.2015.09.015; pmid: 26406374 - B. R. Sabariet al., Coactivator condensation at super-
enhancers links phase separation and gene control.
Science 361 , eaar3958 (2018). doi:10.1126/science.aar3958;
pmid: 29930091 - W.-K. Choet al., Mediator and RNA polymerase II clusters
associate in transcription-dependent condensates.
Science 361 , 412–415 (2018). doi:10.1126/science.aar4199;
pmid: 29930094 - B. A. Gibsonet al., Organization of chromatin by intrinsic and
regulated phase separation.Cell 179 , 470–484.e21 (2019).
doi:10.1016/j.cell.2019.08.037; pmid: 31543265 - G. Wanet al., Spatiotemporal regulation of liquid-like
condensates in epigenetic inheritance.Nature 557 , 679– 683
(2018). doi:10.1038/s41586-018-0132-0; pmid: 29769721 - Y. Lin, D. S. Protter, M. K. Rosen, R. Parker, Formation and
maturation ofphase-separatedliquid droplets by RNA-binding
proteins.Mol. Cell 60 , 208–219 (2015). doi:10.1016/
j.molcel.2015.08.018; pmid: 26412307 - H. Jianget al., Phase transition of spindle-associated protein
regulate spindle apparatus assembly.Cell 163 , 108– 122
(2015). doi:10.1016/j.cell.2015.08.010; pmid: 26388440 - A. K. Rai, J.-X. Chen, M. Selbach, L. Pelkmans, Kinase-
controlled phase transition of membraneless organelles in
mitosis.Nature 559 , 211–216 (2018). doi:10.1038/s41586-018-
0279-8; pmid: 29973724 - O. Beutel, R. Maraspini, K. Pombo-García, C. Martin-Lemaitre,
A. Honigmann, Phase Separation of Zonula Occludens Proteins
Drives Formation of Tight Junctions.Cell 179 , 923–936.e11
(2019). doi:10.1016/j.cell.2019.10.011; pmid: 31675499 - E. S. Freeman Rosenzweiget al., The eukaryotic CO2-
concentrating organelle is liquid-like and exhibits dynamic
reorganization.Cell 171 ,148–162.e19 (2017). doi:10.1016/
j.cell.2017.08.008; pmid: 28938114 - S. Alberti, A. Gladfelter, T. Mittag, Considerations and
Challenges in Studying Liquid-Liquid Phase Separation and
Biomolecular Condensates.Cell 176 , 419–434 (2019).
doi:10.1016/j.cell.2018.12.035; pmid: 30682370 - H. B. Schmidt, A. Barreau, R. Rohatgi, Phase separation-
deficient TDP43 remains functional in splicing.Nat. Commun.
10 , 4890 (2019). doi:10.1038/s41467-019-12740-2;
pmid: 31653829 - D. Brachaet al., Mapping Local and Global Liquid Phase
Behavior in Living Cells Using Photo-Oligomerizable Seeds.Cell
175 , 1467–1480.e13 (2018). doi:10.1016/j.cell.2018.10.048;
pmid: 30500534 - J. A. Segre, Epidermal barrier formation and recovery in skin
disorders.J. Clin. Invest. 116 , 1150–1158 (2006). doi:10.1172/
JCI28521;pmid:^16670755
21.B. A. Dale, K. A. Resing, R. B. Presland, inThe Keratinocyte
Handbook, I. Leigh, E. B. Lane, F. M. Watt, Eds. (Cambridge
Univ. Press, 1994), chap. 17, pp. 323–350. - F. G. Quiroz, A. Chilkoti, Sequence heuristics to encode phase
behaviour in intrinsically disordered protein polymers.
Nat. Mater. 14 , 1164–1171 (2015). doi:10.1038/nmat4418;
pmid: 26390327 - C. N. Palmeret al., Common loss-of-function variants of the
epidermal barrier protein filaggrin are a major predisposing
factor for atopic dermatitis.Nat. Genet. 38 , 441–446 (2006).
doi:10.1038/ng1767; pmid: 16550169 - S. J. Brown, W. H. McLean, One remarkable molecule: Filaggrin.
J. Invest. Dermatol. 132 , 751–762 (2012). doi:10.1038/
jid.2011.393; pmid: 22158554 - D. J. Margoliset al., Filaggrin-2 variation is associated with
more persistent atopic dermatitis in African American subjects.
J. Allergy Clin. Immunol. 133 , 784–789 (2014). doi:10.1016/
j.jaci.2013.09.015; pmid: 24184149 - S. Rahriget al., Transient epidermal barrier deficiency and
lowered allergic threshold in filaggrin-hornerin (FlgHrnr-/-)
double-deficient mice.Allergy 74 , 1327–1339 (2019).
doi:10.1111/all.13756; pmid: 30828807
- X. F. C. C. Wonget al., Array-based sequencing of filaggrin
gene for comprehensive detection of disease-associated
variants.J. Allergy Clin. Immunol. 141 ,814–816 (2018).
doi:10.1016/j.jaci.2017.10.001; pmid: 29056476 - C.-A. Loet al., Quantification of protein levels in single living
cells.Cell Rep. 13 , 2634–2644 (2015). doi:10.1016/
j.celrep.2015.11.048; pmid: 26686644
29.C.G.Bunicket al., Crystal structure of human
profilaggrin S100 domain and identification of target
proteins annexin II, stratifin, and HSP27.J. Invest. Dermatol.
135 ,1801–1809 (2015). doi:10.1038/jid.2015.102;
pmid: 25760235 - S. F. Bananiet al., Compositional control of phase-separated
cellular bodies.Cell 166 , 651–663 (2016). doi:10.1016/
j.cell.2016.06.010; pmid: 27374333 - B. S. Schusteret al., Controllable protein phase separation and
modular recruitment to form responsive membraneless
organelles.Nat. Commun. 9 , 2985 (2018). doi:10.1038/
s41467-018-05403-1; pmid: 30061688 - T. Christensen, W. Hassouneh, K. Trabbic-Carlson, A. Chilkoti,
Predicting transition temperatures of elastin-like polypeptide
fusion proteins.Biomacromolecules 14 , 1514–1519 (2013).
doi:10.1021/bm400167h; pmid: 23565607 - B. R. McNaughton, J. J. Cronican, D. B. Thompson, D. R. Liu,
Mammalian cell penetration, siRNA transfection, and DNA
transfection by supercharged proteins.Proc. Natl. Acad.
Sci. U.S.A. 106 , 6111–6116 (2009). doi:10.1073/
pnas.0807883106; pmid: 19307578 - J. Jaubert, S. Patel, J. Cheng, J. A. Segre, Tetracycline-
regulated transactivatorsdrivenby the involucrin promoter to
achieve epidermal conditional gene expression.J. Invest.
Dermatol. 123 , 313–318 (2004). doi:10.1111/j.0022-
202X.2004.23203.x; pmid: 15245431 - C. Bonnartet al., Elastase 2 is expressed in human and mouse
epidermis and impairs skin barrier function in Netherton
syndrome through filaggrin and lipid misprocessing.
J. Clin. Invest. 120 , 871–882 (2010). doi:10.1172/JCI41440;
pmid: 20179351 - P. Rompolaset al., Spatiotemporal coordination of stem cell
commitment during epidermal homeostasis.Science 352 ,
1471 – 1474 (2016). doi:10.1126/science.aaf7012;
pmid: 27229141 - T.Kartasova,D.R.Roop,K.A.Holbrook,S.H.Yuspa,Mouse
differentiation-specific keratins 1 and 10 require a
preexisting keratin scaffold to form a filament network.
J. Cell Biol. 120 , 1251–1261 (1993). doi:10.1083/
jcb.120.5.1251;pmid:7679677 - V. Kumaret al., A keratin scaffold regulates epidermal barrier
formation, mitochondrial lipid composition, and activity.J. Cell
Biol. 211 , 1057–1075 (2015). doi:10.1083/jcb.201404147;
pmid: 26644517 - C.-H. Lee, M.-S. Kim, B. M. Chung, D. J. Leahy,
P. A. Coulombe, Structural basis for heteromeric assembly
and perinuclear organization of keratin filaments.Nat.
Struct.Mol.Biol. 19 ,707–715 (2012). doi:10.1038/
nsmb.2330;pmid:22705788 - M. P. Hugheset al., Atomic structures of low-complexity
protein segments reveal kinkedbsheets that assemble
networks.Science 359 , 698–701 (2018). doi:10.1126/science.
aan6398; pmid: 29439243 - S. Nodaet al., The Asian atopic dermatitis phenotype
combines features of atopic dermatitis and psoriasis with
increased TH17 polarization.J. Allergy Clin. Immunol. 136 ,
1254 – 1264 (2015).doi: 10 .1016/j.jaci.2015.08.015;
pmid: 26428954 - T. J. Nottet al., Phase transition of a disordered nuage protein
generates environmentally responsive membraneless
organelles.Mol. Cell 57 , 936–947 (2015). doi:10.1016/
j.molcel.2015.01.013; pmid: 25747659 - M. Dzuricky, S. Roberts, A. Chilkoti, Convergence of artificial
protein polymers and intrinsically disordered proteins.
Biochemistry 57 , 2405–2414 (2018). doi:10.1021/acs.
biochem.8b00056; pmid: 29683665 - R. Niesneret al., 3D-resolved investigation of the pH gradient
in artificial skin constructs by means of fluorescence lifetime
imaging.Pharm. Res. 22 , 1079–1087 (2005). doi:10.1007/
s11095-005-5304-6; pmid: 16028008 - J. A. Mackay, D. J. Callahan, K. N. Fitzgerald, A. Chilkoti,
Quantitative model of the phase behavior of recombinant
pH-responsive elastin-like polypeptides.Biomacromolecules 11 ,
2873 – 2879 (2010). doi:10.1021/bm100571j; pmid: 20925333
46. S. Alberti, Guilty by association: Mapping out the
molecular sociology of droplet compartments.Mol. Cell 69 ,
349 – 351 (2018). doi:10.1016/j.molcel.2018.01.020;
pmid: 29395058
47. S. Markmilleret al., Context-dependent and disease-specific
diversity in protein interactions within stress granules.
Cell 172 , 590–604.e13 (2018). doi:10.1016/j.cell.2017.12.032;
pmid: 29373831
48. I. Brody, An ultrastructural study on the role of the
keratohyalin granules in the keratinization process.
J. Ultrastruct. Res. 3 ,84–104 (1959). doi:10.1016/S0022-5320
(59)80018-6; pmid: 13804667
49. T. Makino, M. Takaishi, M. Morohashi, N. H. Huh, Hornerin, a
novel profilaggrin-like protein and differentiation-specific
marker isolated from mouse skin.J. Biol. Chem. 276 ,
47445 – 47452 (2001).doi: 10 .1074/jbc.M107512200;
pmid: 11572870
50. P. M. Steinert, D. A. Parry, L. N. Marekov, Trichohyalin
mechanically strengthens the hair follicle: Multiple cross-
bridging roles in the inner root shealth.J. Biol. Chem. 278 ,
41409 – 41419 (2003). doi:10.1074/jbc.M302037200;
pmid: 12853460
51. B. Mészároset al., PhaSePro: The database of proteins
driving liquid–liquid phase separation.Nucleic Acids Res.
48 ,D360–D367 (2020). doi:10.1093/nar/gkz848;
pmid: 31612960
52. J. Kyte, R. F. Doolittle, A simple method for displaying the
hydropathic character of a protein.J. Mol. Biol. 157 ,105– 132
(1982). doi:10.1016/0022-2836(82)90515-0;
pmid: 7108955
53. J. R. McDaniel, J. A. Mackay, F. G. Quiroz, A. Chilkoti,
Recursive directional ligation by plasmid reconstruction
allows rapid and seamless cloning of oligomeric genes.
Biomacromolecules 11 , 944–952 (2010). doi:10.1021/
bm901387t;pmid: 20184309
54. A. C. Woerneret al., Cytoplasmic protein aggregates interfere
with nucleocytoplasmic transport of protein and RNA.
Science 351 , 173–176 (2016). doi:10.1126/science.aad2033;
pmid: 26634439
55. S. P. Boudkoet al., Crystal structure of human collagen XVIII
trimerization domain: A novel collagen trimerization Fold.
J. Mol. Biol. 392 , 787–802 (2009). doi:10.1016/
j.jmb.2009.07.057; pmid: 19631658
56. A. Ghoorchian, N. B. Holland, Molecular architecture influences
the thermally induced aggregation behavior of elastin-like
polypeptides.Biomacromolecules 12 , 4022–4029 (2011).
doi:10.1021/bm201031m; pmid: 21972921
57. N. Maas-Szabowski, A. Stärker, N. E. Fusenig, Epidermal tissue
regeneration and stromal interaction in HaCaT cells is initiated
by TGF-a.J. CellSci. 116 , 2937 – 2948 (2003). doi:10.1242/
jcs.00474; pmid: 12771184
58. J. A. Nowak, E. Fuchs, inStem Cells in Regenerative Medicine.
(Springer, 2009), pp. 215-232.
59. S. Beronja, G. Livshits, S. Williams, E. Fuchs, Rapid functional
dissection of genetic networks via tissue-specific transduction
and RNAi in mouse embryos.Nat. Med. 16 , 821–827 (2010).
doi:10.1038/nm.2167; pmid: 20526348
60. S. Sankaranarayanan, D. De Angelis, J. E. Rothman, T. A. Ryan,
The use of pHluorins for optical measurements of presynaptic
activity.Biophys. J. 79 , 2199–2208 (2000). doi:10.1016/
S0006-3495(00)76468-X; pmid: 11023924
61. D. E. Johnsonet al., Red fluorescent protein pH biosensor to
detect concentrative nucleoside transport.J. Biol. Chem. 284 ,
20499 – 20511 (2009). doi:10.1074/jbc.M109.019042;
pmid: 19494110
ACKNOWLEDGMENTS
We thank I. Matos for assistance with the live-imaging
setup; L. Hidalgo and M. Sribour for animal assistance; and
S. Ellis and I. Matos for discussion and comments on the
manuscript. We thank the Molecular Cytology Core Facility at
MSKCC and Rockefeller University (RU) Bio-Imaging
Resource Center for use of microscopes, and RU Comparative
Bioscience Center (AAALAC-accredited) for care of mice
in accordance with National Institutes of Health (NIH)
guidelines.Funding:This work was funded by NIH (R01-
AR27883 to E.F.) and partly supported by the Robertson
Therapeutic Development Fund and by a Tri-Institutional Starr
Stem Cell Scholars Fellowship at The Rockefeller University.
E.F. is an HHMI investigator. F.G.Q. holds a Career Award
at the Scientific Interface from Burroughs Wellcome Fund.
Author contributions:F.G.Q. and E.F. conceived the project,
designed the experiments, and interpreted the data. F.G.Q. and
Quirozet al.,Science 367 , eaax9554 (2020) 13 March 2020 11 of 12
RESEARCH | RESEARCH ARTICLE