QMGreensite_merged

(bbancia) #1

4.4. EXPECTATION,UNCERTAINTY,ANDTHEQUANTUMSTATE 55


Asanexample,weprovethethirdoftheseidentitiesusingtheformulaforinte-
grationbyparts:


∫∞

−∞

dxf(x)

d
dx

δ(x−y) = lim
L→∞

∫∞

−∞

dxf(x)

d
dx

δL(x−y)

= lim
L→∞

[
f(x)δL(x−y)|xx==∞−∞−

∫∞

−∞

dx

df
dx

δL(x−y)

]

= lim
L→∞

∫∞

−∞

dx

[

df
dx

δL(x−y)

]

=


∫∞

−∞

dx

[

df
dx

]
δ(x−y) (4.56)

wheretheboundarytermsaredroppedbecauseδL(±∞)=0.


Problem- Provetheotherthreedelta-functionidentitiesabove,inthesenseofeq.
(4.55)


4.4 Expectation, Uncertainty, and the Quantum


State


Inclassicalmechanics,thephysicalstateofasystemisspecifiedbyasetofgeneralized
coordinatesandmomentum{qi,pi},whichisapointinthephasespaceofthesystem.
Inthecourseoftime,thephysicalstatetracesatrajectorythroughthephasespace. In
thecaseofasingleparticlemovinginthreedimensions,thephysicalstateisdenoted
{%x,%p},andthephasespaceis6-dimensional. Theprojectionofthetrajectoryinthe
6-dimensionalphasespaceontothethreedimensionalsubspacespannedbythex,y,
andzaxes,orinotherwords,thepath%x(t),isthetrajectorywhichwecanactually
seetheparticlefollow.
Inquantummechanics,thephysicalstateofapointlikeparticle,movinginone
dimension, isspecifiedateachmomentoftimebyawavefunctionψ(x,t). Atany
giventimet, thiswavefunction isafunctiononlyofx, andcan be regardedas a
vector|ψ>inHilbertspace.Becauseofthenormalizationconditionimposedbythe
BornInterpretation


<ψ|ψ>=


dxdydzψ∗(x,y,z,t)ψ(x,y,z,t)= 1 (4.57)

|ψ >isnecessarilyavector ofunitlength. Inthecourseof time,|ψ>followsa
paththroughHilbertspace. Inroughanalogytothemotionofunitvectorsinfinite
dimensional spaces,onecouldimaginethatthe tipofthe unitvector |ψ >traces
apathon thesurface ofaunitsphere,althoughinthiscasethe spaceisinfinite-
dimensional.

Free download pdf