QMGreensite_merged

(bbancia) #1

13.1. SPINWAVEFUNCTIONS 217


Notethattheinnerproduct


αy·βy=

1


2


[1,−i]

[
1
−i

]
= 1 +(−i)^2 = 0 (13.78)

vanishes,soαyandβyareorthogonal,asexpected.
Bysimilarmeanswecanfindtheeigenstatesofσx,withtheresult:


αx =

1



2


[
1
1

]
βx=

1



2


[
1
− 1

]

αy =

1



2


[
1
i

]
βy=

1



2


[
1
−i

]

χ+=αz =

[
1
0

]
χ−=βz=

[
0
1

]
(13.79)

Exercise: Obtain the eigenstates αx andβx of Sx by the same meansused for
obtainingtheeigenstatesofSy.


Toanalyzethevariationwithtimeoftheelectronmagneticmomentinanexternal
magneticfield,weuse thetime-dependentSchrodingerequationwithHamiltonian
(13.61)


ih ̄∂tψ=

1


2


̄hΩσzψ (13.80)

or,inmatrixform,


[
∂tψ+
∂tψ−

]
=−i

1


2



[
1 0
0 − 1

][
ψ+
ψ−

]
=

[
−^12 iΩψ+
1
2 iΩψ−

]
(13.81)

Thesearetwoindependentfirst-orderdifferentialequations,oneforψ+andonefor
ψ−,andthegeneralsolutioniseasilyseentobe


ψ(t)=

[
ae−iΩt/^2
beiΩt/^2

]
(13.82)

whereaandbareconstants
Supposethatattimet= 0 theelectronisina”spin-up”stateinthex-direction.
Thismeansthattheconstantsaandbaredeterminedtobe


a=b=

1



2


(13.83)

Free download pdf