QMGreensite_merged

(bbancia) #1

272 CHAPTER17. TIME-INDEPENDENTPERTURBATIONTHEORY


Then,tofirstorderinλ


En=h ̄ω(n+

1


2


)+ 3 λ

(
̄h
2 mω

) 2
[1+ 2 n(n+1)] (17.49)

whichwecanalsoexpressas


En= ̄h(ω+δω)(n+

1


2


)+n^2 ̄hδω (17.50)

where


δω= 6 λ

̄h
4 m^2 ω^3

(17.51)


Sotheeffectofthex ̇^4 perturbationisessentiallyashiftδω intheangular fre-
quencyoftheoscillator,togetherwithanincreaseinthespacingofenergylevels.Its
interestingtonotethatnomatterhowsmallλmaybe,theperturbativeexpansion
fortheenergymustbreakdowncompletelywhennislargeenough.Thisisbecause
thezeroth-order energyincreasesonlylinearlywithn, whereasthefirst-ordercor-
rectionincreasesquadratically. Thisbreakdownofperturbationtheoryhasasimple
physicalexplanation. Whateverthevalueofλ, itisalwaystruethat λx^4 >^12 kx^2
whenxislargeenough. Buthighly excitedharmonic oscillatorstates,whichhave
largen,spreadoutfarfromtheoriginx=0,andthereforeprobetheregionwhere
theperturbingpotentialislargerthanthezeroth-orderpotential. Insuchregions,
onecannotexpectperturbationtheorytowork,andinfactitdoesn’t.


17.3 Perturbation Theory in Matrix Notation


Letusdefinethematrixelementsofanoperator,inthebasisofHilbertspacespanned
by{φ(0)n },as


Oij=〈φ
(0)
i |O|φ

(0)
j 〉 (17.52)

Inthisbasis,H 0 isadiagonalmatrix:


[H 0 ]ij = 〈φ(0)i |H 0 |φ(0)j 〉
= δijEj(0)

H 0 =







E 10 0 0 ...


0 E 20 0 ...


0 0 E 30 ...


... ...


... ...







(17.53)


Fordiagonalmatrices,solvingtheeigenvalueproblem


H 0 φ(0)n =En(0)φ(0)n (17.54)
Free download pdf