QMGreensite_merged

(bbancia) #1

336 CHAPTER21. QUANTUMMECHANICSASLINEARALGEBRA


Often,indealingwithproblemsinatomic,nuclear,orparticle physics, weare
interested onlyina finitesubspace ofHilbert space consistingof eigenstates of a
definitetotalangularmomentum;i.e. definitevalueofthequantumnumberj. For
example, the spin angular momentumof an electron corresponds to j =^12 , and
nothingcaneverchangethatvalue,shortofannihilatingtheelectron. Soitmakes
sensetorestrictconsiderationstothej=^12 subspaceofHilbertspace,spanned by
thetwoeigenstates


|j=

1


2


,m=

1


2


> and |j=

1


2


,m=−

1


2


> (21.193)


Inthissubspace,theangularmomentumoperatorsare


J^2 =


3


4


̄h^2

[
1 0
0 1

]
Jz=

1


2


̄h

[
1 0
0 − 1

]

J+ = ̄h

[
0 1
0 0

]

J− = ̄h

[
0 0
1 0

]
(21.194)

Usingeq. (21.192),wecanwritetheangularmomentumoperatorsJx, Jy, Jzinthe
j=^12 subspaceas


Jx=

̄h
2

σx Jy=

̄h
2

σy Jz=

̄h
2

σz (21.195)

wherethematrices


σx=

[
0 1
1 0

]
σy=

[
0 −i
i 0

]
σz=

[
1 0
0 − 1

]
(21.196)

areknownasthePauliSpinMatrices. Theywillbeusefulinourlaterdiscussion
ofelectronspin.


21.4 Canonical Quantization


Quantummechanicsas presentedinpreviouschaptershas beenformulatedinthe
x-representation.Letusreviewhowwegofromtheclassicalmechanicsofaparticle
movinginonedimension, tothecorrespondingquantumtheory: Thetransitionis
madeasfollows:


Classical Quantum
−−−−−−−−−− −−−−−−−−−−−
physicalstate (x,p) wavefunction ψ(x)
Observables O=O(x,p) Operators O ̃=O ̃( ̃x, ̃p)
∂tx=∂∂Hp, ∂tp=−∂∂Hx i ̄h∂tψ(x,t)=H ̃(x ̃,p ̃)ψ(x,t)

cc (21.197)
Free download pdf