QMGreensite_merged

(bbancia) #1

376 CHAPTER24. THEFEYNMANPATHINTEGRAL


andtendtocanceleachotherout.Theexceptionisforpathsinthevicinityofapath
wherethephaseS/ ̄hisstationary. For pathsinthatvicinity,thecontributionsto
thefunctionalintegralhavenearlythesamephase,andhencesumupcontructively.
Butthepathwherethephaseisstationaryisthepathxcl(t′)suchthat
(
δS
δx(t)


)

x=xcl

= 0 (24.51)


Aswehaveseen,thisisjustthecondition thatthepathxcl(t)isasolution ofthe
classical equations of motion. Therefore, for S >> ̄h, the path integralis domi-
natedbypathsintheimmediatevicinityoftheclassicaltrajectoryxcl(t).Inthelimit
̄h→0,onlytheclassicalpath(andpathsinfinitesmallyclosetotheclassicalpath)
contributes. The”semiclassical” orWKBapproximationtotheFeynmanpathin-
tegralis,infact, theapproximationof evaluatingtheintegralintheneighborhood
singleconfigurationxcl(t),i.e.


GT(x,y) =


Dx(t)eiS[x(t)]/ ̄h

≈ prefactor×eiS[xcl(t)]/ ̄h (24.52)

wherethe prefactorisa numerical termwhichcomes fromintegratingoversmall
variationsδxaroundxcl(t).


Problem - Forsome problems, the WKB approximation works extremely well,
evenifS[x,t]isnotsolargecomparedto ̄h. Applythisapproximationtofind the
propagatorofafreeparticle,andcompareittotheexactresult.


24.3 Operators from Path Integrals


Givenatrajectory,x(t),onecanalwaysdefineamomentum,mx ̇(t).Thenanatural
waytodefineamomentumoperatoractingonawavefunctionattimetf isinterms
ofthepath-integral


p ̃ψ(xf,tf)≡


dy


Dx(t)mx ̇(tf)eiS/ ̄hψ(y,t 0 ) (24.53)

wherethepathsrunfrom(x 0 ,t 0 )to(xf,tf),andψ(x,t 0 )isthewavefunctionatany
earliertimet 0 <tf. Letustaket=tfandt 0 =t−!,andthengotothelimit!→0.
Inthatcase


p ̃ψ(x,t) ≡ lim
!→ 0


dym

(x−y)
!

G!(x,y)ψ(y,t−!)

= lim
!→ 0


dym

(x−y)
!

( m

2 πi! ̄h

) 1 / 2
exp

[
i

m
2! ̄h

(x−y)^2 −i

!


h ̄

V(x)

]
ψ(y,t−!)

= lim
!→ 0


dym

(x−y)
!

(
m
2 πi! ̄h

) 1 / 2
exp

[
i

m
2! ̄h

(x−y)^2

]
ψ(y,t−!) (24.54)
Free download pdf