Science - 31 January 2020

(Marcin) #1

  1. N. C. Krieger Lassen, D. Juul Jensen, K. Conradsen,Scanning
    Microsc. 6 , 115–121 (1992).

  2. J. Goulden, P. Trimby, A. Bewick,Microsc. Microanal. 24 (S1),
    1128 – 1129 (2018).

  3. A. J. Schwartz, M. Kumar, B. L. Adams, D. P. Field, Eds.,
    Electron Backscatter Diffraction in Materials Science
    (Springer, 2009).

  4. V. Randle, O. Engler, O. Engler,Introduction to Texture Analysis
    (CRC Press, 2014).

  5. C. Zhuet al.,Int. J. Plast. 92 ,148–163 (2017).

  6. C. Zhu, T. Harrington, G. T. Gray III, K. S. Vecchio,Acta Mater.
    155 , 104–116 (2018).

  7. C. Zhu, T. Harrington, V. Livescu, G. T. Gray III, K. S. Vecchio,
    Acta Mater. 118 , 383–394 (2016).

  8. D. Chen, J. C. Kuo, W. T. Wu,Ultramicroscopy 111 , 1488– 1494
    (2011).

  9. M. M. Nowell, S. I. Wright,J. Microsc. 213 , 296–305 (2004).

  10. F. Ram, M. De Graef,Acta Mater. 144 , 352–364 (2018).

  11. D. J. Dingley, S. I. Wright, inElectron Backscatter Diffraction in
    Materials Science, A. J. Schwartz, M. Kumar, B. L. Adams,
    D. P. Field, Eds. (Springer, 2009), pp. 97–107.

  12. R. P. Goehner, J. R. Michael,J. Res. Natl. Inst. Stand. Technol.
    101 , 301–308 (1996).

  13. L. Li, M. Han,J. Appl. Crystallogr. 48 , 107–115 (2015).

  14. A. A. White,MRS Bull. 38 , 594–595 (2013).

  15. F. Renet al.,Sci. Adv. 4 , eaaq1566 (2018).

  16. D. Xueet al.,Nat. Commun. 7 , 11241 (2016).

  17. A. O. Oliynyket al.,Chem. Mater. 28 , 7324–7331 (2016).
    42.S. Sanvitoet al.,Sci. Adv. 3 , e1602241 (2017).

  18. A. Mansouri Tehraniet al.,J. Am. Chem. Soc. 140 , 9844– 9853
    (2018).

  19. T. Xie, J. C. Grossman,Phys. Rev. Lett. 120 , 145301 (2018).

  20. J. Jung, J. I. Yoon, H. K. Park, J. Y. Kim, H. S. Kim,Comput.
    Mater. Sci. 156 ,17–25 (2019).

  21. O. Isayevet al.,Nat. Commun. 8 , 15679 (2017).

  22. W. Ye, C. Chen, Z. Wang, I.-H. Chu, S. P. Ong,Nat. Commun. 9 ,
    3800 (2018).
    48. B. L. DeCost, E. A. Holm,Comput. Mater. Sci. 110 , 126– 133
    (2015).
    49. B. L. DeCost, T. Francis, E. A. Holm, arXiv 1805.08693 [cs.CV]
    (4 February 2019).
    50. A. Ziletti, D. Kumar, M. Scheffler, L. M. Ghiringhelli,
    Nat. Commun. 9 , 2775 (2018).
    51. F. Oviedoet al.,Npj Comput. Mater. 5 , 60 (2019).
    52. K. He, X. Zhang, S. Ren, J. Sun, inProceedings of the IEEE
    International Conference on Computer Vision(2016),
    pp. 770–778.
    53. F. Chollet, inProceedings of the IEEE International Conference
    on Computer Vision(2017), pp. 1251–1258; http://openaccess.
    thecvf.com/content_cvpr_2017/papers/CholletXception
    Deep_Learning_CVPR_2017_paper.pdf.
    54. R. R. Selvarajuet al.,Int. J. Comput. Vis.10.1007/s11263-019-
    01228-7 (2019).
    55. T. Karthikeyan, M. K. Dash, S. Saroja, M. Vijayalakshmi,
    J. Microsc. 249 ,26–35 (2013).
    56. C. L. Chen, R. C. Thomson,J. Alloys Compd. 490 , 293– 300
    (2010).
    57. S. McLaren, S. M. Reddy,J. Struct. Geol. 30 , 1229– 1241
    (2008).


ACKNOWLEDGMENTS
We thank E. Chin of the Scripps Institute of Oceanography and her
students for their assistance collecting and identifying mineral
and geological samples.Funding:Supported by the U.S. Department
of Defense (DoD) [through the National Defense Science and
Engineering Graduate Fellowship (NDSEG) Program] and the ARCS
Foundation, San Diego Chapter (K.K.); the Joint DoD/Department
of Energy Munitions Technology Development Program and the
Dynamic Materials Science Campaign at LANL (C.Z.); and the Oerlikon
Group (K.S.V.).Author contributions:K.K. assisted in developing
the idea, performed the bulk of the experimental work, worked on
later versions of the neural network python code, and prepared
the initial draft of the manuscript and figures; C.Z. assisted with the
development of the idea into a scientific study, contributed his

knowledge of EBSD, assisted with the figures, and developed
MATLAB code for phase-mapping the machine-learning predictions
and pattern database management; A.S.R. developed the initial
python code for implementing the neural networks; A.S.R. and D.M.
managed the deployment of Grad-CAM tools and assisted in the
analysis of the results from the deep learning models; T.J.H.
assisted K.K. with materials selection, fabrication, and processing;
T.J.H. helped focus the research direction; E.M. assisted K.K. with
materials fabrication, processing, and analysis; K.S.V. led the
development of the idea, guided the focus of the project, and
reviewed and revised the manuscript; and all authors participated
in analyzing and interpreting the final data and contributed to
the discussions and revisions of the manuscript.Competing
interests:The authors declare no competing interests.Data and
materials availability:All data and models generated during
and/or analyzed during the current study are available from the
corresponding author upon reasonable request. The python code
for implementing these models with Keras and Tensorflow is
available at https://github.com/krkaufma/Electron-Diffraction-
CNN, Zenodo (DOI: 10.5281/zenodo.3564937) and from the
corresponding author upon request. The diffraction patterns
analyzed during the current study have not yet been deposited in
a publicly available repository because of the sheer size of the
library (nearly 3 terabytes). This is an ongoing effort and until then,
they are available upon reasonable request.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/367/6477/564/suppl/DC1
Materials and Methods
Supplementary Text
Table S1
Figs. S1 to S10
References ( 58 – 65 )

6 June 2019; accepted 23 December 2019
10.1126/science.aay3062

Kaufmannet al.,Science 367 , 564–568 (2020) 31 January 2020 5of5


RESEARCH | REPORT

Free download pdf