Science - 06.12.2019

(singke) #1

  1. J. G. Jardineet al., Priming a broadly neutralizing antibody
    response to HIV-1 using a germline-targeting immunogen.
    Science 349 , 156–161 (2015). doi:10.1126/science.aac5894;
    pmid: 26089355

  2. J. G. Jardineet al., HIV-1 broadly neutralizing antibody
    precursor B cells revealed by germline-targeting immunogen.
    Science 351 , 1458–1463 (2016). doi:10.1126/science.aad9195;
    pmid: 27013733

  3. A. T. McGuireet al., Specifically modified Env immunogens
    activate B-cell precursors of broadly neutralizing HIV-1 antibodies
    in transgenic mice.Nat. Commun. 7 , 10618 (2016).
    doi:10.1038/ncomms10618; pmid: 26907590

  4. B. Brineyet al., Tailored immunogens direct affinity maturation
    toward HIV neutralizing antibodies.Cell 166 , 1459–1470.e11
    (2016). doi:10.1016/j.cell.2016.08.005; pmid: 27610570

  5. M. Tianet al., Induction of HIV neutralizing antibody lineages in
    mice with diverse precursor repertoires.Cell 166 , 1471–1484.
    e18 (2016). doi:10.1016/j.cell.2016.07.029; pmid: 27610571

  6. D. Soket al., Priming HIV-1 broadly neutralizing antibody
    precursors in human Ig loci transgenic mice.Science 353 ,
    1557 – 1560 (2016). doi:10.1126/science.aah3945;
    pmid: 27608668

  7. M. Medina-Ramírezet al., Design and crystal structure of a
    native-like HIV-1 envelope trimer that engages multiple broadly
    neutralizing antibody precursors in vivo.J. Exp. Med. 214 ,
    2573 – 2590 (2017). doi:10.1084/jem.20161160;
    pmid: 28847869

  8. C. Havenar-Daughtonet al., The human naïve B cell repertoire
    contains distinct subclasses for a germline-targeting HIV-1
    vaccine immunogen.Sci. Transl. Med. 10 , eaat0381 (2018).
    doi:10.1126/scitranslmed.aat0381;pmid: 29973404

  9. U.S. National Library of Medicine, A phase I trial to evaluate the
    safety and immunogenicity of eOD-GT8 60mer vaccine,
    adjuvanted;https://clinicaltrials.gov/ct2/show/
    NCT03547245.

  10. N. T. Freundet al., Coexistence of potent HIV-1 broadly
    neutralizing antibodies and antibody-sensitive viruses in a
    viremic controller.Sci. Transl. Med. 9 , eaal2144 (2017).
    doi:10.1126/scitranslmed.aal2144; pmid: 28100831

  11. C. O. Barneset al., Structural characterization of a highly-potent
    V3-glycan broadly neutralizing antibody bound to natively-
    glycosylated HIV-1 envelope.Nat. Commun. 9 , 1251 (2018).
    doi:10.1038/s41467-018-03632-y; pmid: 29593217

  12. D. Sok, D. R. Burton, Recent progress in broadly neutralizing
    antibodies to HIV.Nat. Immunol. 19 , 1179–1188 (2018).
    doi:10.1038/s41590-018-0235-7; pmid: 30333615

  13. See materials and methods.

  14. B. Briney, A. Inderbitzin, C. Joyce, D. R. Burton, Commonality
    despite exceptional diversity in the baseline human antibody
    repertoire.Nature 566 , 393–397 (2019). doi:10.1038/
    s41586-019-0879-y; pmid: 30664748

  15. J. M. Steichenet al., HIV vaccine design to target germline
    precursors of glycan-dependent broadly neutralizing
    antibodies.Immunity 45 , 483–496 (2016). doi:10.1016/
    j.immuni.2016.08.016; pmid: 27617678

  16. D. W. Kulpet al., Structure-based design of native-like
    HIV-1 envelope trimers to silence non-neutralizing epitopes
    and eliminate CD4 binding.Nat. Commun. 8 , 1655 (2017).
    doi:10.1038/s41467-017-01549-6; pmid: 29162799

  17. R. K. Abbottet al., Precursor frequency and affinity determine
    B cell competitive fitness in germinal centers, tested with
    germline-targeting HIV vaccine immunogens.Immunity 48 ,
    133 – 146.e6 (2018). doi:10.1016/j.immuni.2017.11.023;
    pmid: 29287996

  18. Y. C. Linet al., One-step CRISPR/Cas9 method for the rapid
    generation of human antibody heavy chain knock-in mice.
    EMBO J. 37 ,e99243 (2018). doi:10.15252/embj.201899243;
    pmid: 30087111

  19. K. Sliepenet al., Presenting native-like HIV-1 envelope trimers
    on ferritin nanoparticles improves their immunogenicity.
    Retrovirology 12 , 82 (2015). doi:10.1186/s12977-015-0210-4;
    pmid: 26410741

  20. T. Tokatlianet al., Innate immune recognition of glycans
    targets HIV nanoparticle immunogens to germinal centers.
    Science 363 , 649–654 (2019). doi:10.1126/science.aat9120;
    pmid: 30573546

  21. A. Escolanoet al., Sequential immunization elicits broadly
    neutralizing anti-HIV-1 antibodies in Ig knockin mice.Cell 166 ,


1445 – 1458.e12 (2016). doi:10.1016/j.cell.2016.07.030;
pmid: 27610569


  1. C. Havenar-Daughton, R. K. Abbott, W. R. Schief, S. Crotty,
    When designing vaccines, consider the starting material: The
    human B cell repertoire.Curr. Opin. Immunol. 53 , 209– 216
    (2018). doi:10.1016/j.coi.2018.08.002; pmid: 30190230

  2. J. G. Jardineet al., Minimally mutated HIV-1 broadly
    neutralizing antibodies to guide reductionist vaccine design.
    PLOS Pathog. 12 , e1005815 (2016). doi:10.1371/journal.
    ppat.1005815; pmid: 27560183

  3. S. Bangaruet al., A site of vulnerability on the influenza virus
    hemagglutinin head domain trimer interface.Cell 177 ,
    1136 – 1152.e18 (2019). doi:10.1016/j.cell.2019.04.011;
    pmid: 31100268

  4. D. Cortiet al., A neutralizing antibody selected from plasma
    cells that binds to group 1 and group 2 influenza A
    hemagglutinins.Science 333 , 850–856 (2011). doi:10.1126/
    science.1205669; pmid: 21798894

  5. A. I. Flyaket al., HCV broadly neutralizing antibodies use a
    CDRH3 disulfide motif to recognize an E2 glycoprotein site that
    can be targeted for vaccine design.Cell Host Microbe 24 ,
    703 – 716.e3 (2018).doi:10.1016/j.chom.2018.10.009;
    pmid: 30439340

  6. E. Landaiset al., Broadly neutralizing antibody responses in a
    large longitudinal sub-Saharan HIV primary infection cohort.
    PLOS Pathog. 12 , e1005369 (2016). doi:10.1371/journal.
    ppat.1005369; pmid: 26766578

  7. C. Sulowayet al., Automated molecular microscopy: The new
    Leginon system.J. Struct. Biol. 151 ,41–60 (2005).
    doi:10.1016/j.jsb.2005.03.010; pmid: 15890530

  8. S. Q. Zhenget al., MotionCor2: Anisotropic correction of
    beam-induced motion for improved cryo-electron microscopy.
    Nat. Methods 14 , 331–332 (2017). doi:10.1038/nmeth.4193;
    pmid: 28250466

  9. K. Zhang, Gctf: Real-time CTF determination and correction.
    J. Struct. Biol. 193 ,1–12 (2016). doi:10.1016/j.jsb.2015.11.003;
    pmid: 26592709

  10. N. R. Voss, C. K. Yoshioka, M. Radermacher, C. S. Potter,
    B. Carragher, DoG Picker and TiltPicker: Software tools to
    facilitate particle selection in single particle electron
    microscopy.J. Struct. Biol. 166 , 205–213 (2009). doi:10.1016/
    j.jsb.2009.01.004; pmid: 19374019

  11. D. Kimanius, B. O. Forsberg, S. H. Scheres, E. Lindahl,
    Accelerated cryo-EM structure determination with
    parallelisation using GPUs in RELION-2.eLife 5 , e18722 (2016).
    doi:10.7554/eLife.18722; pmid: 27845625

  12. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and
    development of Coot.Acta Crystallogr. D Biol. Crystallogr. 66 ,
    486 – 501 (2010). doi:10.1107/S0907444910007493;
    pmid: 20383002

  13. P. D. Adamset al., PHENIX: A comprehensive Python-based
    system for macromolecular structure solution.Acta Crystallogr.
    D Biol. Crystallogr. 66 , 213–221 (2010). doi:10.1107/
    S0907444909052925; pmid: 20124702

  14. P.Conway, M. D. Tyka, F. DiMaio, D. E. Konerding, D. Baker,
    Relaxation of backbone bond geometry improves protein
    energy landscape modeling.Protein Sci. 23 ,47–55 (2014).
    doi:10.1002/pro.2389; pmid: 24265211

  15. T. Lütteke, M. Frank, C. W. von der Lieth, Carbohydrate
    Structure Suite (CSS): Analysis of carbohydrate 3D structures
    derived from the PDB.Nucleic Acids Res. 33 , D242–D246
    (2005). doi:10.1093/nar/gki013; pmid: 15608187

  16. M. D. Winnet al., Overview of the CCP4 suite and current
    developments.Acta Crystallogr. D Biol. Crystallogr. 67 ,
    235 – 242 (2011). doi:10.1107/S0907444910045749;
    pmid: 21460441

  17. B. A. Baradet al., EMRinger: Side chain-directed model
    and map validation for 3D cryo-electron microscopy.
    Nat. Methods 12 , 943–946 (2015). doi:10.1038/nmeth.3541;
    pmid: 26280328

  18. V. B. Chenet al., MolProbity: All-atom structure validation for
    macromolecular crystallography.Acta Crystallogr. D Biol.
    Crystallogr. 66 ,12–21 (2010). doi:10.1107/
    S0907444909042073; pmid: 20057044

  19. E. F. Pettersenet al., UCSF Chimera—A visualization system
    for exploratory research and analysis.J. Comput. Chem. 25 ,
    1605 – 1612 (2004). doi:10.1002/jcc.20084; pmid: 15264254
    48. J. R. Williset al., Redesigned HIV antibodies exhibit enhanced
    neutralizing potency and breadth.J. Clin. Invest. 125 ,
    2523 – 2531 (2015). doi:10.1172/JCI80693; pmid: 25985274
    49. B. J. DeKoskyet al., In-depth determination and analysis of the
    human paired heavy- and light-chain antibody repertoire.Nat. Med.
    21 ,86–91 (2015). doi: 1 0.1038/nm.3743;pmid: 25501908
    50. M. P. Lefrancet al., IMGT®, the international ImMunoGeneTics
    information system®25 years on.Nucleic Acids Res. 43 ,
    D413–D422 (2015). doi:10.1093/nar/gku1056; pmid: 25378316
    51. E. Krissinel, K. Henrick, Inference of macromolecular
    assemblies from crystalline state.J. Mol. Biol. 372 , 774– 797
    (2007). doi:10.1016/j.jmb.2007.05.022; pmid: 17681537
    52. M. P. Lefrancet al., IMGT unique numbering for
    immunoglobulin and T cell receptor variable domains and Ig
    superfamily V-like domains.Dev. Comp. Immunol. 27 ,55– 77
    (2003). doi:10.1016/S0145-305X(02)00039-3;
    pmid: 12477501


ACKNOWLEDGMENTS
We thank H. Gristick and P. Bjorkman for providing atomic
coordinates of unliganded BG18 Fab in advance of publication ( 17 )
and C. Corbaci for graphical design assistance for the summary.
Funding:This work was supported by the National Institute of
Allergy and Infectious Diseases (NIAID) UM1 Al100663 (Scripps
Center for HIV/AIDS Vaccine Immunology and Immunogen
Discovery) and UM1 AI144462 (Scripps Consortium for HIV/AIDS
Vaccine Development) (to W.R.S., F.D.B., S.C., A.B.W., and
D.R.B) and NIAID R01 AI113867 (to W.R.S.); by the Ragon Institute
of MGH, MIT, and Harvard (to F.D.B., W.R.S., and D.R.B.); by the
International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody
Consortium (NAC) and Center (to W.R.S., A.B.W., I.A.W., and
D.R.B.); and through the Collaboration for AIDS Vaccine Discovery
funding for the IAVI NAC Center (to W.R.S., A.B.W., I.A.W., and
D.R.B.).Author contributions:J.M.S. and W.R.S. conceived the
study. J.M.S., Y.-C.L., C.H.-D., S.P., G.O., D.R.B., A.B.W., S.C.,
F.D.B., and W.R.S. designed the study. J.M.S., D.W.K., S.R., A.R.,
and W.R.S. designed immunogens. J.M.S. designed Abs. Y.-C.L.,
S.P., S.K., E.M., and F.D.B performed immunization studies. C.H.-D.
and L.T. performed naïve B cell–sorting studies. G.O. and
J.L.T. performed cryo-EM studies. B.B. performed NGS. J.R.W.
performed bioinformatics analyses. D.S., E.L., and J.U. performed
neutralization assays. A.L., O.K., and X.H. characterized immunogens
and Abs. E.G., N.P., Y.A., and M.K. purified proteins. S.M.B. and
I.A.W. contributed structural information. J.M.S. and W.R.S.
wrote the manuscript. All co-authors edited the manuscript.
Competing interests:S.P. is now employed by GSK Vaccines
S.r.l., a company that might benefit indirectly from this research.
D.R.B. is a paid consultant of IAVI. J.M.S. and W.R.S. are inventors
on a patent application submitted by IAVI and The Scripps
Research Institute that covers the N332-GT immunogens
developed in this manuscript.Data and materials availability:
Coordinates and maps for the structural data presented in
this manuscript have been deposited to the Protein Data Bank
under accession codes 6DFG, 6DFH, 6NF5, 6NFC, and 6OC7 and
to the Electron Microscopy Data Bank under accession codes
EMD-7875, EMD-7876, EMD-7884, and EMD-7885. Antibody
sequences discovered during this study have been deposited to
GenBank under accession numbers MN495018 to MN495471
(BG18gHmouse antibodies) and MN514889 to MN514945 (human
naïve B cell antibodies binding N332-GT immunogens). Custom
scripts for the NGS database query will be made available from
W.R.S upon request. NGS sequencing data used in this manuscript
and example analysis methods are available athttps://github.
com/SchiefLab/SteichenScience2019. All other data are available
in the main text or supplementary materials.

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/366/6470/eaax4380/suppl/DC1
Supplementary Text
Figs. S1 to S18
Tables S1 to S7
References ( 53 – 62 )
View/request a protocol for this paper fromBio-protocol.
22 March 2019; accepted 17 October 2019
Published online 31 October 2019
10.1126/science.aax4380

Steichenet al.,Science 366 , eaax4380 (2019) 6 December 2019 13 of 13


RESEARCH | RESEARCH ARTICLE


on December 12, 2019^

http://science.sciencemag.org/

Downloaded from
Free download pdf