G8

(Amit KumaranZ9-e) #1
Copyright © Swun Math Grade 8 Unit 2 Lesson 3 C TE

Homework


Unit 2 · Lesson 3: Divide Exponents


Objective: I will use the expanded form to show the division of exponents.


Vocabulary Steps:


Properties of Exponents

Power to Power (an)m= anm (Multiply)

Multiply (Like Bases) am⋅an= am+n (Add)

Power of a Product anbn=(ab)n (Keep)

Division (Like Bases)

an
am= a

n−m (Subtract)


  1. Identify the base(s) and exponent(s).

  2. Write the exponential notation in expanded
    form.

  3. Cancel all fractions that are equivalent to 1.
    3
    3 = 1 and^


푎푎
푎푎= 1^


  1. Simplify.

  2. Check using the properties of exponents.


Example # 1
Directions: Simplify. Write solution in standard form
25
22
Solution:
Expanded Form: Property:





2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2
2∙2^


  • 22 ⋅^22 ⋅2⋅2⋅2 1 = 2^3



  • 22 ⋅^22 ⋅2⋅2⋅2 1 = 2^3

  • 283 =

    • 2




5
22 = 2

5−2


  • 23 = 8


Example # 2
(− 3 )^4 ⋅ (− 3 )^3
(− 3 )^5
Solution:
Expanded Form: Property:


  • (−^3 )∙((−−3^3 ))∙∙((−−3^3 ))∙∙((−−3^3 ))∙∙((−−3^3 ))∙∙((−−3^3 ))∙(−^3 )^


• (−3)∙((−3−3))∙∙((−3−3))∙∙((−3−3))∙∙((−3−3))∙∙((−3−3))∙(−3)^ →((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙(−3) 1 ∙(−3)


• ((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙(−3) 1 ∙(−3)



  • ((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙((−3−3))∙(−3) 1 ∙(−3)=(− 3 )^2

  • (− 3 )^2 = 9

    • (−3)




(^4) ∙(−3) 3
(−3)^5 =
(−3)^4 +^3
(−3)^5 =
(−3)^7
(−3)^5



  • (−3)


7
(−3)^5 = (−3)

7−5


  • (−3)^2 = 9


Name: ___


Date: ___

Free download pdf