Nature | Vol 577 | 2 January 2020 | 83related to immunity and stress responses in N. colorata, including
genes encoding nucleotide-binding leucine-rich repeat (NLR) proteins,
protein kinases and WRKY transcription factors, compared with those
in Amborella and some mesangiosperms (Extended Data Fig. 9, Sup-
plementary Note 8). It is possible that increased numbers of these genes
enabled water lilies to adapt to various ecological habitats globally.
In conclusion, the N. colorata genome offers a reference for compara-
tive genomics and for resolving the deep phylogenetic relationships
among the ANA-grade and mesangiosperms. It has also revealed a WGD
specific to Nymphaeales, and provides insights into the early evolution
of angiosperms on key innovations such as flower development and
floral scent and colour.
Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-019-1852-5.
- Byng, J. W. et al. An update of the Angiosperm Phylogeny Group classification
for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181 , 1–20
(2016). - Zeng, L. et al. Resolution of deep angiosperm phylogeny using conserved nuclear genes
and estimates of early divergence times. Nat. Commun. 5 , 4956 (2014). - Qiu, Y. L. et al. The earliest angiosperms: evidence from mitochondrial, plastid and
nuclear genomes. Nature 402 , 404–407 (1999). - Chen, F. et al. Water lilies as emerging models for Darwin’s abominable mystery. Hortic.
Res. 4 , 17051 (2017). - Amborella Genome Project. The Amborella genome and the evolution of flowering
plants. Science 342 , 1241089 (2013). - Wiens, J. J. Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol. 52 ,
528–538 (2003). - Coiro, M., Doyle, J. A. & Hilton, J. How deep is the conflict between molecular and fossil
evidence on the age of angiosperms? New Phytol. 223 , 83–99 (2019). - Alvarez-Buylla, E. R. et al. Flower development. Arabidopsis Book 8 , e0127 (2010).
- Zhao, N. et al. Identification of flowering regulatory genes in allopolyploid Brassica
juncea. Hortic. Plant J. 5 , 109–119 (2019). - Ke, M. et al. Auxin controls circadian flower opening and closure in the waterlily. BMC
Plant Biol. 18 , 143 (2018). - Sharma, B. & Kramer, E. M. Aquilegia B gene homologs promote petaloidy of the sepals
and maintenance of the C domain boundary. Evodevo 8 , 22 (2017). - Dodsworth, S. Petal, sepal, or tepal? B-genes and monocot flowers. Trends Plant Sci. 22 ,
8–10 (2017). - Chanderbali, A. S. et al. Conservation and canalization of gene expression during
angiosperm diversification accompany the origin and evolution of the flower. Proc. Natl
Acad. Sci. USA 107 , 22570–22575 (2010).
a bPetalStamenSepalJuvenile leafJuvenile leafstalkRootMature leafCarpelMature leafstalkJuvenile flowerNC11G0120830
NC7G0246550
NC2G0007900
NC11G0240820
NC11G0240810
NC13G0302010
NC12G0138630
NC11G0138610
NC11G0138620
NC2G0007880
NC11G0120810
NC11G0120820
2004006008001,0001,2001,400deFPKM5.04.02.03.01.015 20 250Abundance (total ion)Retention time (min)12IS3
456789101111 fragrance molecules13
568cFatty acidsRelative activityButanoic
acid (C4)Hexanoic
acid (C6)Octanoic
acid (C8)Decanoic
acid (C10)Dodecanoic
acid (C12)Tetradecanoic
acid (C14)85 TPS-b
in N. colorataMethyl
octanoatem-AnisaldehydeMethyl
decanoateα-BergamoteneGermacrene B
(E)-β-
Fanesene
PentadecaneIsodauceneTetradecyneHeptadeceneFarnesane
4Monocots
Eudicots
NymphaealesAmborellalesFloral methyl decanoate+Compound GeneDAMTFloral sesquiterpenes+
++Compound Gene
TPS-a
TPS-aTPS-b/gNonyl acetate00.20.40.60.81.0SABATH gene familyNC11G01208300.6Marchantia polymorphaPhyscomitrella patensArabidopsis thaliana
Populus trichocarpa
Oryza sativa
Sorghum bicolor
Nymphaea colorata
Amborella trichopoda
Picea abies
Selaginella moellendorffiiFig. 4 | Floral scent and biosynthesis in N. colorata. a, Gas chromatogram of
f loral volatiles from the f lower of N. colorata. The internal standard (IS) is nonyl
acetate. Methyl esters are in blue; terpenes are in red. Floral scent was
measured three times independently with similar results. b, Phylogenetic tree
of terpene synthases from N. colorata and representative plants showing the
subfamilies from a–h and x. c, Expression analysis of S A B AT H genes of
N. colorata showed that NC11G0120830 had the highest expression level in petal.
d, Relative activity of Escherichia coli-expressed NC11G0120830 with six fatty
acids as substrates, with the activity on decanoic acid set at 1.0. Data are
mean ± s.d. of three independent measurements. e, The presence (+) and
absence (−) of sesquiterpenes and methyl decanoate as f loral scent compounds
and their respective biosynthetic genes in four major lineages of angiosperms
when known. DAMT, decanoic acid methyltranferase.