Science - USA (2020-07-10)

(Antfer) #1

histories and were thus able to determine
where a shortcut was truly novel. Second, we
ruled out the use of path integration. Specif-
ically,pathintegration,whichdoesnotrequire
external sensory input, is notorious for its ac-
cumulation of error ( 22 ),andthisistrueinbats
( 23 ). If the animals were using path integration,
then we would expect an increase in error
when they flew farther from their starting point
and when they turned more ( 22 , 24 , 25 ). We
found no correlation between the straightness
of the long-cuts and any of these parameters:
accumulated flight duration, flight distance, or
turning before the return (fig. S17). In addition,
the animals’ability to return from the trans-


location sites (in straight trajectories) could not
be explained by path integration.
Taken together, our results satisfy the re-
quirements of demonstrating visual map–based
navigation. That said, some caveats are in order.
First, we do not claim that the map is Euclidean
nor that the distances are accurately repre-
sented in the bat’s brain. Second, navigation
is a complex behavior that probably does not
always rely on a single strategy ( 2 , 26 ). Bats
occasionally switched from using map-based
navigation to alternative strategies like flying
along landscape elements such as highways
(Fig. 1F, fig. S6, and supplementary text, sec-
tion S6), but our data demonstrate that they

have a map-like representation of their envi-
ronment and can navigate according to this
cognitive map when necessary.

REFERENCES AND NOTES


  1. E. C. Tolman,Psychol. Rev. 55 , 189–208 (1948).

  2. J. F. Cheesemanet al.,Proc. Natl. Acad. Sci. U.S.A. 111 ,
    8949 – 8954 (2014).

  3. R. Menzelet al.,Proc. Natl. Acad. Sci. U.S.A. 102 , 3040– 3045
    (2005).

  4. A. Tsoaret al.,Proc. Natl. Acad. Sci. U.S.A. 108 , E718–E724
    (2011).

  5. J. O’Keefe, L. Nadel,The Hippocampus as a Cognitive Map
    (Oxford Univ. Press, 1978).

  6. K. Egert-Berget al.,Curr. Biol. 28 , P3667–P3673 (2018).

  7. Materials and methods are available as supplementary
    materials.

  8. N. S. Bar, S. Skogestad, J. M. Marçal, N. Ulanovsky, Y. Yovel,
    PLOS Biol. 13 , e1002046 (2015).

  9. A. Boonman, Y. Bar-On, N. Cvikel, Y. Yovel,Front. Physiol. 4 ,
    248 (2013).

  10. S. Danilovichet al.,Curr. Biol. 25 , R1124–R1125 (2015).

  11. Y. Yovel, M. Geva-Sagiv, N. Ulanovsky,J. Comp. Physiol. A
    Neuroethol. Sens. Neural Behav. Physiol. 197 , 515–530 (2011).

  12. A. Gagliardo,J. Exp. Biol. 216 , 2165–2171 (2013).

  13. S. Papi, F. Fiore, L. Fiaschi, V. Benvenuti,Monit. Zool. Ital. 6 ,
    85 – 95 (1972).

  14. A. Gagliardo, P. Ioalè, M. Savini, H.-P. Lipp, G. Dell’Omo,J. Exp.
    Biol. 210 , 1132–1138 (2007).

  15. W.-P. Stilz, H.-U. Schnitzler,J. Acoust. Soc. Am. 132 , 1765– 1775
    (2012).

  16. D. A. Waller, L. Nadel,Handbook of Spatial Cognition(American
    Psychological Association, 2013).

  17. L. K. Arvidsson, F. Adriaensen, S. van Dongen,
    N. De Stobbeleere, E. Matthysen,Anim. Behav. 123 , 151– 158
    (2017).

  18. N. J. Dingemanse, C. Both, P. J. Drent, K. van Oers,
    A. J. van Noordwijk,Anim. Behav. 64 , 929–938 (2002).

  19. R. M. R. Barclay, D. S. Jacobs,Can. J. Zool. 89 , 466– 473
    (2011).

  20. A. T. Bennett,J. Exp. Biol. 199 , 219–224 (1996).

  21. B. A. Cartwright, T. S. Collett,Nature 295 , 560– 564
    (1982).

  22. A. Cheung, S. Zhang, C. Stricker, M. V. Srinivasan,Biol. Cybern.
    97 , 47–61 (2007).

  23. G. Aharon, M. Sadot, Y. Yovel,Curr. Biol. 27 , 3650–3657.e3
    (2017).

  24. M. Müller, R. Wehner,Proc. Natl. Acad. Sci. U.S.A. 85 ,
    5287 – 5290 (1988).

  25. A. S. Etienne, R. Maurer, V. Séguinot,J. Exp. Biol. 199 , 201– 209
    (1996).

  26. F. C. Dyer, J. L. Gould,Science 214 , 1041–1042 (1981).

  27. L. Harten, A. Katz, A. Goldshtein, M. Handel, Y. Yovel, Data for:
    The ontogeny of a mammalian cognitive map in the real world,
    Version 1, Mendeley (2020); https://doi.org/10.17632/n9d8gbz3xr.1.


ACKNOWLEDGMENTS
We thank N. Ulanovsky, T. Eliav, and M. Geva for reading and
commenting on the manuscript and M. Taub for assistance with
graphics.Funding:This research was partially supported by
the European Research Council (ERC–GPSBAT).Author
contributions:L.H. and Y.Y. designed the experiment. Y.Y., A.K.,
and L.H. conceived the analysis. L.H. and M.H. conducted the
experiment. Y.Y., A.K., and A.G. conducted the analysis. A.G.
performed drone imaging and analysis. Y.Y. wrote the manuscript.
L.H., A.K., and A.G. reviewed the manuscript.Competing
interests:The authors declare no competing interests.Data and
materials availability:All datasets included in the paper are
available on Mendeley ( 27 ).

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/369/6500/194/suppl/DC1
Materials and Methods
Supplementary Text, Sections S1 to S6
Figs. S1 to S25
Captions for Movies S1 to S4
References ( 28 – 38 )
Movies S1 to S4
GPS Tracking Data
11 June 2019; accepted 29 May 2020
10.1126/science.aay3354

SCIENCEsciencemag.org 10 JULY 2020•VOL 369 ISSUE 6500 197


20

40

60

1

0

Home range (km^2 )

04268 10 12 14

0

20

40

60

80

100
e

A

e

C day 88

B Koral

D E F

Home range
on day 60 (km

2 )

Bat ID sorted

0 50 100

0

0.5

1

SI

Mean max altitude (m)

0

0.5

1

0 1000 2000 3000
Min distance (m)

0

0.5

1

40 60 80

p=0.001
R=0.75

p=0.002
R=0.73

p=0.64
R=0.13

Female
Male

Female
Male

Fig. 4. Translocation experiments reveal individual navigation capabilities.(A) Different individuals
(x-axis) tended to be more or less exploratory. They-axis depicts the bat’s home range on day 60.
“Koral,”“Suki,”and“Nature”are bat names. (BandC) Three examples of translocations for a weak explorer
(left column), an intermediate explorer (middle column), and an extreme explorer (right column). (B)
Movements of the three bats before the translocation. (C) Return flights of the same three bats from the
translocation point. (DandE) The straightness of homing back from the translocation point significantly
correlated with: (D) the tendency to explore (depicted by the home range) and (E) the altitude flown by the
bats on the nights before the translocation. (F) The straightness of homing back did not correlate with
the nearest distance of previous trajectories to the point of translocation (i.e., how close the bat was to the
translocation point on previous nights).


RESEARCH | REPORTS
Free download pdf