- P. Galkaet al., Functional analyses of the plant photosystem
I-light-harvesting complex II supercomplex reveal that
light-harvesting complex II loosely bound to photosystem II is
a very efficient antenna for photosystem I in state II.Plant
Cell 24 , 2963–2978 (2012). doi:10.1105/tpc.112.100339;
pmid: 22822202 - S. Santabarbara, T. Tibiletti, W. Remelli, S. Caffarri, Kinetics
and heterogeneity of energy transfer from light harvesting
complex II to photosystem I in the supercomplex isolated
fromArabidopsis.Phys. Chem. Chem. Phys. 19 , 9210– 9222
(2017). doi:10.1039/C7CP00554G; pmid: 28319223 - X. Piet al., Unique organization of photosystem I-light-
harvesting supercomplex revealed by cryo-EM from a red
alga.Proc. Natl. Acad. Sci. U.S.A. 115 , 4423–4428 (2018).
doi:10.1073/pnas.1722482115; pmid: 29632169 - X. Qinet al., Structure of a green algal photosystem I in
complex with a large number of light-harvesting complex I
subunits.Nat. Plants 5 , 263–272 (2019). doi:10.1038/
s41477-019-0379-y; pmid: 30850820 - M. Iwai, P. Grob, A. T. Iavarone, E. Nogales, K. K. Niyogi,
A unique supramolecular organization of photosystem I in the
mossPhyscomitrella patens.Nat. Plants 4 , 904–909 (2018).
doi:10.1038/s41477-018-0271-1; pmid: 30374090 - C. Le Quiniouet al., PSI-LHCI ofChlamydomonas reinhardtii:
Increasing the absorption cross section without losing
efficiency.Biochim. Biophys. Acta 1847 , 458–467 (2015).
doi:10.1016/j.bbabio.2015.02.001; pmid: 25681242 - S. Caffarri, K. Broess, R. Croce, H. van Amerongen, Excitation
energy transfer and trapping in higher plant Photosystem II
complexes with different antenna sizes.Biophys. J. 100 ,2094– 2103
(2011). doi:10.1016/j.bpj.2011.03.049;pmid:21539776 - Y. Takahashi, T. A. Yasui, E. J. Stauber, M. Hippler,
Comparison of the subunit compositions of the PSI-LHCI
supercomplex and the LHCI in the green alga
Chlamydomonas reinhardtii.Biochemistry 43 , 7816 – 7823
(2004). doi:10.1021/bi035988z; pmid: 15196024 - A. Pinnolaet al., A LHCB9-dependent photosystem I
megacomplex induced under low light inPhyscomitrella
patens.Nat. Plants 4 , 910–919 (2018). doi:10.1038/s41477-
018-0270-2; pmid: 30374091 - Y. Umena, K. Kawakami, J. R. Shen, N. Kamiya, Crystal structure
of oxygen-evolving photosystem II at a resolution of 1.9 Å.Nature
473 ,55–60 (2011). doi:10.1038/nature09913;pmid:21499260 - F. Müh, A. Zouni, Structural basis of light-harvesting in the
photosystem II core complex.Protein Sci. 29 , 1090– 1119
(2020). doi:10.1002/pro.3841; pmid: 32067287 - Y. Miloslavinaet al., Charge separation kinetics in intact
photosystem II core particles is trap-limited. A picosecond
fluorescence study.Biochemistry 45 , 2436–2442 (2006).
doi:10.1021/bi052248c; pmid: 16475833 - C. D. van der Weij-de Wit, J. P. Dekker, R. van Grondelle,
I. H. van Stokkum, Charge separation is virtually irreversible
in photosystem II core complexes with oxidized primary
quinone acceptor.J. Phys. Chem. A 115 , 3947–3956 (2011).
doi:10.1021/jp1083746; pmid: 21341818 - S. Vassiliev, C. I. Lee, G. W. Brudvig, D. Bruce, Structure-
based kinetic modeling of excited-state transfer and trapping
in histidine-tagged photosystem II core complexes from
synechocystis.Biochemistry 41 , 12236–12243 (2002).
doi:10.1021/bi0262597; pmid: 12356326 - R. Croce, H. van Amerongen, Light-harvesting and structural
organization of Photosystem II: From individual complexes
to thylakoid membrane.J. Photochem. Photobiol. B 104 ,
142 – 153 (2011). doi:10.1016/j.jphotobiol.2011.02.015;
pmid: 21402480 - S. Caffarri, R. Kouril, S. Kereïche, E. J. Boekema, R. Croce,
Functional architecture of higher plant photosystem II
supercomplexes.EMBO J. 28 , 3052 – 3063 (2009).
doi:10.1038/emboj.2009.232; pmid: 19696744 - H. Van Amerongen, L. Valkunas, R. van Grondelle,
Photosyntheric Excitons(World Scientific, 2000). - A. Marin, F. Passarini, R. Croce, R. van Grondelle, Energy
transfer pathways in the CP24 and CP26 antenna complexes
of higher plant photosystem II: A comparative study.Biophys.
J. 99 , 4056–4065 (2010). doi:10.1016/j.bpj.2010.10.034;
pmid: 21156149
78. L. Dall’Osto, S. Cazzaniga, D. Zappone, R. Bassi, Monomeric
light harvesting complexes enhance excitation energy
transfer from LHCII to PSII and control their lateral spacing in
thylakoids.Biochim. Biophys. Acta Bioenerg. 1861 , 148035
(2020). doi:10.1016/j.bbabio.2019.06.007; pmid: 31226317
79. R. Tokutsu, M. Iwai, J. Minagawa, CP29, a monomeric light-
harvesting complex II protein, is essential for state transitions
inChlamydomonas reinhardtii.J. Biol. Chem. 284 , 7777– 7782
(2009). doi:10.1074/jbc.M809360200; pmid: 19144643
80. S. Farooq, J. Chmeliov, G. Trinkunas, L. Valkunas,
H. van Amerongen, Is there excitation energy transfer
between different layers of stacked photosystem-II-
containing thylakoid membranes?J. Phys. Chem. Lett. 7 ,
1406 – 1410 (2016). doi:10.1021/acs.jpclett.6b00474;
pmid: 27014831
81. E. G. Andrizhiyevskaya, D. Frolov, R. van Grondelle,
J. P. Dekker, On the role of the CP47 core antenna in the
energy transfer and trapping dynamics of Photosystem II.
Phys. Chem. Chem. Phys. 6 , 4810–4819 (2004).
doi:10.1039/b411977k
82. M. Ballottari, L. Dall’Osto, T. Morosinotto, R. Bassi, Contrasting
behavior of higher plant photosystem I and II antenna systems
during acclimation.J. Biol. Chem. 282 , 8947–8958 (2007).
doi:10.1074/jbc.M606417200; pmid: 17229724
83. J. M. Anderson, W. S. Chow, J. De Las Rivas, Dynamic
flexibility in the structure and function of photosystem II in
higher plant thylakoid membranes: The grana enigma.
Photosynth. Res. 98 , 575–587 (2008). doi:10.1007/s11120-
008-9381-3; pmid: 18998237
84. E.Wientjes, H. van Amerongen, R. Croce, Quantum yield of
charge separation in photosystem II: Functional effect of
changes in the antenna size upon light acclimation.J. Phys.
Chem. B 117 , 11200–11208 (2013). doi:10.1021/jp401663w;
pmid: 23534376
85. E. J. Boekema, H. van Roon, F. Calkoen, R. Bassi, J. P. Dekker,
Multiple types of association of photosystem II and its light-
harvesting antenna in partially solubilized photosystem II
membranes.Biochemistry 38 , 2233–2239 (1999).
doi:10.1021/bi9827161; pmid: 10029515
86. A. J. Bell, L. K. Frankel, T. M. Bricker, High yield non-
detergent isolation of photosystem I-light-harvesting
chlorophyll II membranes from spinach thylakoids:
Implications for the organization of the PS I antennae in
higher plants.J. Biol. Chem. 290 , 18429–18437 (2015).
doi:10.1074/jbc.M115.663872; pmid: 26055710
87. K. N. Yadavet al., Supercomplexes of plant photosystem I
with cytochrome b6f, light-harvesting complex II and NDH.
Biochim. Biophys. Acta Bioenerg. 1858 ,12–20 (2017).
doi:10.1016/j.bbabio.2016.10.006; pmid: 27755973
88. S. L. Bensonet al., An intact light harvesting complex I
antenna system is required for complete state transitions in
Arabidopsis.Nat. Plants 1 , 15176 (2015). doi:10.1038/
nplants.2015.176; pmid: 27251716
89. L. Dall’Osto, S. Cazzaniga, M. Havaux, R. Bassi, Enhanced
photoprotection by protein-bound vs free xanthophyll pools:
A comparative analysis of chlorophyll b and xanthophyll
biosynthesis mutants.Mol. Plant 3 , 576–593 (2010).
doi:10.1093/mp/ssp117; pmid: 20100799
90. A. V. Ruban, Nonphotochemical Chlorophyll Fluorescence
Quenching: Mechanism and Effectiveness in Protecting
Plants from Photodamage.Plant Physiol. 170 , 1903– 1916
(2016). doi:10.1104/pp.15.01935; pmid: 26864015
91. X. P. Liet al., A pigment-binding protein essential for
regulation of photosynthetic light harvesting.Nature 403 ,
391 – 395 (2000).doi:10.1038/35000131; pmid: 10667783
92. G. Peerset al., An ancient light-harvesting protein is critical
for the regulation of algal photosynthesis.Nature 462 ,
518 – 521 (2009). doi:10.1038/nature08587; pmid: 19940928
93. D. A. Semchonoket al., Interaction between the photoprotective
protein LHCSR3 and C 2 S 2 Photosystem II supercomplex in
Chlamydomonas reinhardtii.Biochim. Biophys. Acta Bioenerg.
1858 ,379–385 (2017). doi:10.1016/j.bbabio.2017.02.015;
pmid: 28257778
94. K. Katoet al., Structural basis for the adaptation and function
of chlorophyll f in photosystem I.Nat. Commun. 11 , 238
(2020). doi:10.1038/s41467-019-13898-5; pmid: 31932639
95. C. Gisrielet al., The structure of Photosystem I acclimated to
far-red light illuminates an ecologically important acclimation
process in photosynthesis.Sci. Adv. 6 , eaay6415 (2020).
doi:10.1126/sciadv.aay6415; pmid: 32076649
96. H. Toporik, J. Li, D. Williams, P. L. Chiu, Y. Mazor, The
structure of the stress-induced photosystem I-IsiA antenna
supercomplex.Nat. Struct. Mol. Biol. 26 , 443–449 (2019).
doi:10.1038/s41594-019-0228-8; pmid: 31133699
97. M. Schafferet al., A cryo-FIB lift-out technique enables
molecular-resolution cryo-ET within native Caenorhabditis
elegans tissue.Nat. Methods 16 , 757–762 (2019).
doi:10.1038/s41592-019-0497-5; pmid: 31363205
98. W. Wietrzynskiet al., Charting the native architecture of
Chlamydomonasthylakoid membranes with single-molecule
precision.eLife 9 , e53740 (2020). doi:10.7554/eLife.53740;
pmid: 32297859
99. J. Kernet al., Structures of the intermediates of Kok’s
photosynthetic water oxidation clock.Nature 563 , 421– 425
(2018). doi:10.1038/s41586-018-0681-2; pmid: 30405241
100. M. Sugaet al., An oxyl/oxo mechanism for oxygen-oxygen
coupling in PSII revealed by an x-ray free-electron laser.
Science 366 , 334–338 (2019). doi:10.1126/science.aax6998;
pmid: 31624207
101. C. Gisrielet al., Membrane protein megahertz crystallography
at the European XFEL.Nat. Commun. 10 , 5021 (2019).
doi:10.1038/s41467-019-12955-3; pmid: 31685819
102. F. Ganet al., Extensive remodeling of a cyanobacterial
photosynthetic apparatus in far-red light.Science 345 ,
1312 – 1317 (2014). doi:10.1126/science.1256963;
pmid: 25214622
103. M. Chen, Chlorophyll modifications and their spectral
extension in oxygenic photosynthesis.Annu. Rev. Biochem.
83 , 317–340 (2014). doi:10.1146/annurev-biochem-072711-
162943 ; pmid: 24635479
104. T. Forster,“Delocalized excitation and excitation transfer,”in
Modern Quantum Chemistry. Part III Action of Light and
Organic Crystals,O. Sinanoglu, Ed. (Academic, 1965), vol. 3,
pp. 93–137.
105. H. van Amerongen, R. van Grondelle, Understanding the
energy transfer function of LHCII, the major light-harvesting
complex of green plants.J. Phys. Chem. B 105 , 604– 617
(2001). doi:10.1021/jp0028406
106. T. Polívka, H. A. Frank, Molecular factors controlling
photosynthetic light harvesting by carotenoids.Acc. Chem.
Res. 43 , 1125–1134 (2010). doi:10.1021/ar100030m;
pmid: 20446691
107. Z. Liuet al., Crystal structure of spinach major light-
harvesting complex at 2.72 A resolution.Nature 428 ,
287 – 292 (2004). doi:10.1038/nature02373; pmid: 15029188
108. P. Jordanet al., Three-dimensional structure of
cyanobacterial photosystem I at 2.5 A resolution.
Nature 411 ,909–917 (2001). doi:10.1038/35082000;
pmid: 11418848
109. M. Abramet al., Remodeling of excitation energy transfer
in extremophilic red algal PSI-LHCI complex during
light adaptation.Biochim.Biophys.Acta Bioenerg. 1861 ,
148093 (2020). doi:10.1016/j.bbabio.2019.148093;
pmid: 31669460
110. M. Sugaet al., Native structure of photosystem II at
1.95 Å resolution viewed by femtosecond X-ray pulses.
Nature 517 ,99–103 (2015). doi:10.1038/nature13991;
pmid: 25470056
111. E. Kim, S. Akimoto, R. Tokutsu, M. Yokono, J. Minagawa,
Fluorescence lifetime analyses reveal how the high light-
responsive protein LHCSR3 transforms PSII light-harvesting
complexes into an energy-dissipative state.J. Biol. Chem.
292 , 18951–18960 (2017). doi:10.1074/jbc.M117.805192;
pmid: 28972177
ACKNOWLEDGMENTS
We thank V. Mascoli for help in setting up the program for the
analysis of the structures.Competing interests:The authors
declare no competing interests.
10.1126/science.aay2058
Croceet al.,Science 369 , eaay2058 (2020) 21 August 2020 9of9
RESEARCH | REVIEW