- C. Zhanget al., Structural basis of STING binding with and
phosphorylation by TBK1.Nature 567 , 394–398 (2019).
doi:10.1038/s41586-019-1000-2; pmid: 30842653 - L. Corraleset al., Direct Activation of STING in the Tumor
Microenvironment Leads to Potent and Systemic Tumor
Regression and Immunity.Cell Rep. 11 , 1018–1030 (2015).
doi:10.1016/j.celrep.2015.04.031; pmid: 25959818 - T. L. Whiteside, S. Demaria, M. E. Rodriguez-Ruiz, H. M. Zarour,
I. Melero, Emerging Opportunities and Challenges in Cancer
Immunotherapy.Clin. Cancer Res. 22 , 1845–1855 (2016).
doi:10.1158/1078-0432.CCR-16-0049; pmid: 27084738 - K. E. Sivicket al., Magnitude of Therapeutic STING Activation
Determines CD8+T Cell-Mediated Anti-tumor Immunity.
Cell Rep. 25 , 3074–3085.e5 (2018). doi:10.1016/
j.celrep.2018.11.047; pmid: 30540940 - A. Sallets, S. Robinson, A. Kardosh, R. Levy, Enhancing
immunotherapy of STING agonist for lymphoma in preclinical
models.Blood Adv. 2 , 2230–2241 (2018). doi:10.1182/
bloodadvances.2018020040; pmid: 30194137 - G. Berger, M. Marloye, S. E. Lawler, Pharmacological
Modulation of the STING Pathway for Cancer Immunotherapy.
Trends Mol. Med. 25 , 412–427 (2019). doi:10.1016/
j.molmed.2019.02.007; pmid: 30885429 - S. Yum, M. H. Li, A. E. Frankel, Z. J. J. Chen, Roles of the cGAS-
STING Pathway in Cancer Immunosurveillance and
Immunotherapy.Annu. Rev. Cancer Biol. 3 , 323–344 (2019).
doi:10.1146/annurev-cancerbio-030518-055636 - J. Conlonet al., Mouse, but not human STING, binds and
signals in response to the vascular disrupting agent 5,6-
dimethylxanthenone-4-acetic acid.J. Immunol. 190 , 5216– 5225
(2013). doi:10.4049/jimmunol.1300097; pmid: 23585680 - D. Prantneret al., 5,6-Dimethylxanthenone-4-acetic acid (DMXAA)
activates stimulator of interferon gene (STING)-dependent innate
immune pathways and is regulated by mitochondrial membrane
potential.J. Biol. Chem. 287 , 39776–39788 (2012). doi:10.1074/
jbc.M112.382986;pmid:23027866 - S. Kimet al., Anticancer flavonoids are mouse-selective STING
agonists.ACS Chem. Biol. 8 , 1396–1401 (2013). doi:10.1021/
cb400264n; pmid: 23683494 - J. M. Weisset al., The STING agonist DMXAA triggers a
cooperation between T lymphocytes and myeloid cells that
leads to tumor regression.OncoImmunology 6 ,e1346765(2017).
doi:10.1080/2162402X.2017.1346765; pmid: 29123960 - J. Hwang, T. Kang, J. Lee, B. S. Choi, S. Han, Design, synthesis,
and biological evaluation of C7-functionalized DMXAA
derivatives as potential human-STING agonists.Org. Biomol.
Chem. 17 , 1869–1874 (2019). doi: 10 .1039/C8OB01798K;
pmid: 30117503
- J. M. Ramanjuluet al., Design of amidobenzimidazole
STING receptor agonists with systemic activity.Nature 564 ,
439 – 443 (2018). doi:10.1038/s41586-018-0705-y;
pmid: 30405246 - G. Yiet al., Single nucleotide polymorphisms of human
STING can affect innate immune response to cyclic
dinucleotides.PLOS ONE 8 , e77846 (2013). doi:10.1371/
journal.pone.0077846; pmid: 24204993 - J. D. Saueret al., The N-ethyl-N-nitrosourea-induced
Goldenticket mouse mutant reveals an essential function of
Sting in the in vivo interferon response to Listeria
monocytogenes and cyclic dinucleotides.Infect. Immun.
79 , 688–694 (2011). doi:10.1128/IAI.00999-10;
pmid: 21098106 - D. A. Annis, E. Nickbarg, X. Yang, M. R. Ziebell, C. E. Whitehurst,
Affinity selection-mass spectrometry screening techniques for
small molecule drug discovery.Curr. Opin. Chem. Biol. 11 ,
518 – 526 (2007). doi:10.1016/j.cbpa.2007.07.011;
pmid: 17931956 - B. A. Webb, M. Chimenti, M. P. Jacobson, D. L. Barber, Dysregulated
pH: A perfect storm for cancer progression.Nat. Rev. Cancer 11 ,
671 – 677 (2011). doi:10.1038/nrc3110;pmid:21833026 - D. O. Scott, A. Ghosh, L. Di, T. S. Maurer, Passive drug
permeation through membranes and cellular distribution.
Pharmacol. Res. 117 ,94–102 (2017). doi:10.1016/
j.phrs.2016.11.028; pmid: 27890815
ACKNOWLEDGMENTS
We thank B. Andresen, D. Hesk, T. Ho, D. Levorse, N. Rivera,
and X. Song for generation of custom reagents and molecular
characterization needed for these studies; H. Hatch and
E. DiNunzio for support in developing certain biochemical and
cell-based assays used in this work; C. Li for assistance with
coordinating in vivo studies; and A. Beard, H.-Y. Kim, L. Nogle,
C. Pickens, J. Sauri, D. Sloman, D. Smith, and WuXi AppTec
for contributions to synthesis, purification, and characterization
of the molecules described herein. This research used resources
at the Industrial Macromolecular Crystallography Association
Collaborative Access Team (IMCA-CAT) beamline 17-ID, supported
by the companies of the Industrial Macromolecular Crystallography
Association through a contract with Hauptman-Woodward Medical
Research Institute. This research used resources of the Advanced
Photon Source, a U.S. Department of Energy (DOE) Office of
Science User Facility operated for the DOE Office of Science by
Argonne National Laboratory under contract no. DE-AC02-
06CH11357. We acknowledge the Paul Scherrer Institut, Villigen,
Switzerland, for provision of synchrotron radiation beamtime at
beamline PXI_X06SA of the Swiss Light Source.Funding:This
work was supported by Merck Sharp & Dohme Corp., a subsidiary
of Merck & Co., Inc., Kenilworth, NJ, USA.Author contributions:
B.-S.P., S.A.P., J.A.P., J.P.P., G.K.S., B.W.T., B.M.L., M.D.A.,
A.V.B., J.N.C., P.J.D., A.H., I.Ka., I.Kn., B.J.L., D.J.B., L.R., S.C., S.S.,
C.A.L., L.P., D.F.W., and G.H.A. conceived, designed, or planned
the studies. B.-S.P., S.A.P., J.A.P., J.P.P., G.K.S., M.D.A., A.V.B.,
Y.C., J.J., J.K., J.L., C.A.L., A.H., L.R., S.S., E.C.M., B.S., Y.M.,
B.C., W.C., Y.C., G.F., T.H., R.L., M.L., G.O., R.O., L.P., S.T., H.W.,
D.F.W., and S.X. contributed to the design and synthesis of
molecules and/or acquisition, analysis, or interpretation of
the data. B.-S.P., S.A.P., J.A.P., J.P.P., G.K.S., B.W.T., J.N.C., M.D.A.,
C.A.L., and D.F.W. drafted the manuscript. All authors critically
reviewed or revised the manuscript for intellectual content
and approved the final version.Competing interests:Merck &
Co., Inc., has filed patent applications related to this manuscript,
including: PCT International Patent Application nos. PCT/US2016/
046444, PCT/US2017/054688, PCT/US2017/066557, PCT/
US2018/044275, PCT/US2018/044276, and PCT/US2019/025088.
All authors are employees or former employees of Merck Sharp &
Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ,
USA, and may hold stock or stock options in Merck & Co., Inc.,
Kenilworth, NJ, USA.Data and materials availability:All data are
available in the main text or the supplementary materials. The
structure factors and coordinates have been deposited with the
Protein Data Bank (IDs 6UKM, 6UKU, 6UKV, 6UKW, 6UKX, 6UKY,
6UKZ, and 6UL0).
SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/369/6506/eaba6098/suppl/DC1
Materials and Methods
Supplementary Text S1 and S2
Figs. S1 to S11
Tables S1 to S6
References ( 24 – 39 )
View/request a protocol for this paper fromBio-protocol.
17 December 2019; accepted 13 July 2020
10.1126/science.aba6098
Panet al.,Science 369 , eaba6098 (2020) 21 August 2020 10 of 10
RESEARCH | RESEARCH ARTICLE