Science - USA (2020-08-21)

(Antfer) #1

  1. C. Zhanget al., Structural basis of STING binding with and
    phosphorylation by TBK1.Nature 567 , 394–398 (2019).
    doi:10.1038/s41586-019-1000-2; pmid: 30842653

  2. L. Corraleset al., Direct Activation of STING in the Tumor
    Microenvironment Leads to Potent and Systemic Tumor
    Regression and Immunity.Cell Rep. 11 , 1018–1030 (2015).
    doi:10.1016/j.celrep.2015.04.031; pmid: 25959818

  3. T. L. Whiteside, S. Demaria, M. E. Rodriguez-Ruiz, H. M. Zarour,
    I. Melero, Emerging Opportunities and Challenges in Cancer
    Immunotherapy.Clin. Cancer Res. 22 , 1845–1855 (2016).
    doi:10.1158/1078-0432.CCR-16-0049; pmid: 27084738

  4. K. E. Sivicket al., Magnitude of Therapeutic STING Activation
    Determines CD8+T Cell-Mediated Anti-tumor Immunity.
    Cell Rep. 25 , 3074–3085.e5 (2018). doi:10.1016/
    j.celrep.2018.11.047; pmid: 30540940

  5. A. Sallets, S. Robinson, A. Kardosh, R. Levy, Enhancing
    immunotherapy of STING agonist for lymphoma in preclinical
    models.Blood Adv. 2 , 2230–2241 (2018). doi:10.1182/
    bloodadvances.2018020040; pmid: 30194137

  6. G. Berger, M. Marloye, S. E. Lawler, Pharmacological
    Modulation of the STING Pathway for Cancer Immunotherapy.
    Trends Mol. Med. 25 , 412–427 (2019). doi:10.1016/
    j.molmed.2019.02.007; pmid: 30885429

  7. S. Yum, M. H. Li, A. E. Frankel, Z. J. J. Chen, Roles of the cGAS-
    STING Pathway in Cancer Immunosurveillance and
    Immunotherapy.Annu. Rev. Cancer Biol. 3 , 323–344 (2019).
    doi:10.1146/annurev-cancerbio-030518-055636

  8. J. Conlonet al., Mouse, but not human STING, binds and
    signals in response to the vascular disrupting agent 5,6-
    dimethylxanthenone-4-acetic acid.J. Immunol. 190 , 5216– 5225
    (2013). doi:10.4049/jimmunol.1300097; pmid: 23585680

  9. D. Prantneret al., 5,6-Dimethylxanthenone-4-acetic acid (DMXAA)
    activates stimulator of interferon gene (STING)-dependent innate
    immune pathways and is regulated by mitochondrial membrane
    potential.J. Biol. Chem. 287 , 39776–39788 (2012). doi:10.1074/
    jbc.M112.382986;pmid:23027866

  10. S. Kimet al., Anticancer flavonoids are mouse-selective STING
    agonists.ACS Chem. Biol. 8 , 1396–1401 (2013). doi:10.1021/
    cb400264n; pmid: 23683494

  11. J. M. Weisset al., The STING agonist DMXAA triggers a
    cooperation between T lymphocytes and myeloid cells that
    leads to tumor regression.OncoImmunology 6 ,e1346765(2017).
    doi:10.1080/2162402X.2017.1346765; pmid: 29123960

  12. J. Hwang, T. Kang, J. Lee, B. S. Choi, S. Han, Design, synthesis,
    and biological evaluation of C7-functionalized DMXAA


derivatives as potential human-STING agonists.Org. Biomol.
Chem. 17 , 1869–1874 (2019). doi: 10 .1039/C8OB01798K;
pmid: 30117503


  1. J. M. Ramanjuluet al., Design of amidobenzimidazole
    STING receptor agonists with systemic activity.Nature 564 ,
    439 – 443 (2018). doi:10.1038/s41586-018-0705-y;
    pmid: 30405246

  2. G. Yiet al., Single nucleotide polymorphisms of human
    STING can affect innate immune response to cyclic
    dinucleotides.PLOS ONE 8 , e77846 (2013). doi:10.1371/
    journal.pone.0077846; pmid: 24204993

  3. J. D. Saueret al., The N-ethyl-N-nitrosourea-induced
    Goldenticket mouse mutant reveals an essential function of
    Sting in the in vivo interferon response to Listeria
    monocytogenes and cyclic dinucleotides.Infect. Immun.
    79 , 688–694 (2011). doi:10.1128/IAI.00999-10;
    pmid: 21098106

  4. D. A. Annis, E. Nickbarg, X. Yang, M. R. Ziebell, C. E. Whitehurst,
    Affinity selection-mass spectrometry screening techniques for
    small molecule drug discovery.Curr. Opin. Chem. Biol. 11 ,
    518 – 526 (2007). doi:10.1016/j.cbpa.2007.07.011;
    pmid: 17931956

  5. B. A. Webb, M. Chimenti, M. P. Jacobson, D. L. Barber, Dysregulated
    pH: A perfect storm for cancer progression.Nat. Rev. Cancer 11 ,
    671 – 677 (2011). doi:10.1038/nrc3110;pmid:21833026

  6. D. O. Scott, A. Ghosh, L. Di, T. S. Maurer, Passive drug
    permeation through membranes and cellular distribution.
    Pharmacol. Res. 117 ,94–102 (2017). doi:10.1016/
    j.phrs.2016.11.028; pmid: 27890815
    ACKNOWLEDGMENTS
    We thank B. Andresen, D. Hesk, T. Ho, D. Levorse, N. Rivera,
    and X. Song for generation of custom reagents and molecular
    characterization needed for these studies; H. Hatch and
    E. DiNunzio for support in developing certain biochemical and
    cell-based assays used in this work; C. Li for assistance with
    coordinating in vivo studies; and A. Beard, H.-Y. Kim, L. Nogle,
    C. Pickens, J. Sauri, D. Sloman, D. Smith, and WuXi AppTec
    for contributions to synthesis, purification, and characterization
    of the molecules described herein. This research used resources
    at the Industrial Macromolecular Crystallography Association
    Collaborative Access Team (IMCA-CAT) beamline 17-ID, supported
    by the companies of the Industrial Macromolecular Crystallography
    Association through a contract with Hauptman-Woodward Medical
    Research Institute. This research used resources of the Advanced


Photon Source, a U.S. Department of Energy (DOE) Office of
Science User Facility operated for the DOE Office of Science by
Argonne National Laboratory under contract no. DE-AC02-
06CH11357. We acknowledge the Paul Scherrer Institut, Villigen,
Switzerland, for provision of synchrotron radiation beamtime at
beamline PXI_X06SA of the Swiss Light Source.Funding:This
work was supported by Merck Sharp & Dohme Corp., a subsidiary
of Merck & Co., Inc., Kenilworth, NJ, USA.Author contributions:
B.-S.P., S.A.P., J.A.P., J.P.P., G.K.S., B.W.T., B.M.L., M.D.A.,
A.V.B., J.N.C., P.J.D., A.H., I.Ka., I.Kn., B.J.L., D.J.B., L.R., S.C., S.S.,
C.A.L., L.P., D.F.W., and G.H.A. conceived, designed, or planned
the studies. B.-S.P., S.A.P., J.A.P., J.P.P., G.K.S., M.D.A., A.V.B.,
Y.C., J.J., J.K., J.L., C.A.L., A.H., L.R., S.S., E.C.M., B.S., Y.M.,
B.C., W.C., Y.C., G.F., T.H., R.L., M.L., G.O., R.O., L.P., S.T., H.W.,
D.F.W., and S.X. contributed to the design and synthesis of
molecules and/or acquisition, analysis, or interpretation of
the data. B.-S.P., S.A.P., J.A.P., J.P.P., G.K.S., B.W.T., J.N.C., M.D.A.,
C.A.L., and D.F.W. drafted the manuscript. All authors critically
reviewed or revised the manuscript for intellectual content
and approved the final version.Competing interests:Merck &
Co., Inc., has filed patent applications related to this manuscript,
including: PCT International Patent Application nos. PCT/US2016/
046444, PCT/US2017/054688, PCT/US2017/066557, PCT/
US2018/044275, PCT/US2018/044276, and PCT/US2019/025088.
All authors are employees or former employees of Merck Sharp &
Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ,
USA, and may hold stock or stock options in Merck & Co., Inc.,
Kenilworth, NJ, USA.Data and materials availability:All data are
available in the main text or the supplementary materials. The
structure factors and coordinates have been deposited with the
Protein Data Bank (IDs 6UKM, 6UKU, 6UKV, 6UKW, 6UKX, 6UKY,
6UKZ, and 6UL0).

SUPPLEMENTARY MATERIALS
science.sciencemag.org/content/369/6506/eaba6098/suppl/DC1
Materials and Methods
Supplementary Text S1 and S2
Figs. S1 to S11
Tables S1 to S6
References ( 24 – 39 )
View/request a protocol for this paper fromBio-protocol.

17 December 2019; accepted 13 July 2020
10.1126/science.aba6098

Panet al.,Science 369 , eaba6098 (2020) 21 August 2020 10 of 10


RESEARCH | RESEARCH ARTICLE

Free download pdf