392 | Nature | Vol 584 | 20 August 2020
Article
aerogel market in industrial and building insulation. In addition, the ease
with which particulate or polymeric functionality can be incorporated
into the ink—illustrated here by the MnO 2 -modified inks for thermal
transpiration—combined with multi-material printing, enables the pro-
duction of objects with spatially varying function. This brings electrical,
magnetic, optical, chemical and medical applications of silica aerogels
into reach, and will allow aerogel phases (along with their tunable func-
tionality) to be integrated into advanced multi-material architectures.
Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2594-0.
- Kistler, S. S. Coherent expanded aerogels and jellies. Nature 127 , 741 (1931).
- Hüsing, N. & Schubert, U. Aerogels—airy materials: chemistry, structure, and properties.
Angew. Chem. Int. Ed. 37 , 22–45 (1998). - Prakash, S. S., Brinker, J. C., Hurd, A. J. & Rao, S. M. Silica aerogel films prepared at
ambient pressure by using surface derivatization to induce reversible drying shrinkage.
Nature 374 , 439–443 (1995); erratum 375 , 431 (1995). - Wordsworth, R., Kerber, L. & Cockell, C. Enabling Martian habitability with silica aerogel
via the solid-state greenhouse effect. Nat Astron. 3 , 898–903 (2019). - Koebel, M. M., Rigacci, A. & Achard, P. in Aerogels Handbook (eds Aegerter, M. et al.)
607–633 (Springer, 2011). - Morris, C. A., Anderson, M. L., Stroud, R. M., Merzbacher, C. I. & Rolison, D. R. Silica
sol as a nanoglue: flexible synthesis of composite aerogels. Science 284 , 622–624
(1999). - Kim, C. et al. Large-scale nanoporous metal-coated silica aerogels for high SERS effect
improvement. Sci. Rep. 8 , 15144 (2018). - Pollanen, J. et al. New chiral phases of superfluid^3 He stabilized by anisotropic silica
aerogel. Nat. Phys. 8 , 317–320 (2012). - Dumée, L. F. et al. Silver metal nano-matrixes as high efficiency and versatile catalytic
reactors for environmental remediation. Sci. Rep. 7 , 45112 (2017). - Shin, D. et al. Scalable variable-index elasto-optic metamaterials for macroscopic optical
components and devices. Nat. Commun. 8 , 16090 (2017). - Sandford, S. A. et al. Organics captured from Comet 81P/Wild 2 by the Stardust
spacecraft. Science 314 , 1720–1724 (2006). - Lee, K. P., Gould, G. L., Gronemeyer, W. & Stepanian, C. J. Methods to produce gel sheets.
US patent 7,399,439 B2 (2008). - Bertino, M. F. Rapid fabrication of hybrid aerogels and 3D printed porous materials.
J. Sol-Gel Sci. Technol. 86 , 239–254 (2018).
14. Collins, R. Aerogels 2019–2029: technologies, markets and players. IDTechX, https://
http://www.idtechex.com/en/research-report/aerogels-2019–
2029-technologies-markets-and-players/644 (2018).
15. Zhang, Q. et al. 3D printing of graphene aerogels. Small 12 , 1702–1708 (2016).
16. Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat.
Commun. 6 , 6962 (2015).
17. Jiang, Y. et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv.
Funct. Mater. 28 , 1707024 (2018).
18. Guo, F. et al. Highly stretchable carbon aerogels. Nat. Commun. 9 , 881 (2018).
19. He, P. et al. Patterned carbon nitride-based hybrid aerogel membranes via 3D printing for
broadband solar wastewater remediation. Adv. Funct. Mater. 28 , 1801121 (2018).
20. Zhu, C. et al. Toward digitally controlled catalyst architectures: hierarchical nanoporous
gold via 3D printing. Sci. Adv. 4 , eaas9459 (2018).
21. Chandrasekaran, S. et al. Direct ink writing of organic and carbon aerogels. Mater. Horiz.
5 , 1166–1175 (2018).
22. Hausmann, M. K. et al. Dynamics of cellulose nanocrystal alignment during 3D printing.
ACS Nano 12 , 6926–6937 (2018).
23. Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540 , 371–378
(2016).
24. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic
4D printing. Nat. Mater. 15 , 413–418 (2016).
25. Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for
untethered fast-transforming soft materials. Nature 558 , 274–279 (2018).
26. Maleki, H., Montes, S., Hayati-Roodbari, N., Putz, F. & Huesing, N. Compressible, thermally
insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers
inside a silica structure—an approach towards 3D printing of aerogels. ACS Appl. Mater.
Interfaces 10 , 22718–22730 (2018).
27. Hyun, K., Kim, S. H., Ahn, K. H. & Lee, S. J. Large amplitude oscillatory shear as a way to
classify the complex fluids. J. Non-Newt. Fluid Mech. 107 , 51–65 (2002).
28. Yang, Y., Li, Y., Mao, M., Zeng, M. & Zhao, X. UV–visible–infrared light-driven
thermocatalysis for environmental purification on ramsdellite MnO 2 hollow spheres
considerably promoted by a novel photoactivation. ACS Appl. Mater. Interfaces 9 , 2350–
2357 (2017).
29. He, X., Bahk, Y. K. & Wang, J. Organic dye removal by MnO 2 and Ag micromotors under
various ambient conditions: the comparison between two abatement mechanisms.
Chemosphere 184 , 601–608 (2017).
30. Wei, G., Liu, Y., Zhang, X., Yu, F. & Du, X. Thermal conductivities study on silica aerogel
and its composite insulation materials. Int. J. Heat Mass Transf. 54 , 2355–2366 (2011).
31. Iswar, S. et al. Reinforced and superinsulating silica aerogel through in situ cross-linking
with silane terminated prepolymers. Acta Mater. 147 , 322–328 (2018).
32. Muntz, E., Sone, Y., Aoki, K., Vargo, S. & Young, M. Performance analysis and optimization
considerations for a Knudsen compressor in transitional flow. J. Vac. Sci. Technol. A 20 ,
214–224 (2002).
33. Zhao, S. et al. Dimensional and structural control of silica aerogel membranes for
miniaturized motionless gas pumps. ACS Appl. Mater. Interfaces 7 , 18803–18814 (2015).
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2020