CHAPTER 17. TRIGONOMETRY 17.3
�
D�
A�B
�
C60 ◦
30
◦va1
2 a
Figure 17.8: An equilateral triangle with one angle bisected.So, we have:
sin(30◦) =opposite( 30 ◦)
hypotenuse=a
2
a
=1
2
cos(30◦) =
adjacent( 30 ◦)
hypotenuse=√ 3
2 a
a=√
3
2
tan(30◦) =
opposite( 30 ◦)
adjacent( 30 ◦)=a
√^2
3
2 a
=1
√
3
sin(60◦) =
opposite( 60 ◦)
hypotenuse=√ 3
2 a
a=√
3
2
cos(60◦) =adjacent( 60 ◦)
hypotenuse=a
2
a
=1
2
tan(60◦) =
opposite( 60 ◦)
adjacent( 60 ◦)=√
3
2 a
a
2
=√
3
TipTwo useful triangles to
remember30 ◦60 ◦
1√
3245 ◦45 ◦
11√
2You do not have to memorise these identities if you know how to work them out.
Alternate Definition fortanθ EMBDB
We know that tan θ is defined as:
tan θ =opposite
adjacentThis can be written as:
tan θ =
opposite
adjacent×
hypotenuse
hypotenuse=
opposite
hypotenuse×
hypotenuse
adjacentBut, we also know that sin θ is defined as:
sin θ =opposite
hypotenuse