17.4 CHAPTER 17. TRIGONOMETRY
cos x =− 0 ,5 [60◦]
II : x = 180◦− 60 ◦+ (360◦. n);n∈Z
= 120◦+ (360◦. n);n∈Z
III : x = 180◦+ 60◦(360◦. n);n∈Z
= 240◦+ (360◦. n);n∈Zcos x = 1 [90◦]
I;IV : x = 0◦(360◦. n);n∈Z
= (360◦. n);n∈ZNow we find the specific solutions in the interval [− 180 ◦;360◦]. Appropri-
ate values of n yieldx =− 120 ◦;0◦;120◦;240◦;360◦Example 13:
QUESTION
Solve for x in the interval [− 360 ◦;360◦]:2sin^2 x− sin xcos x = 0SOLUTION
Step 1 : Factorise
Factorising yieldssin x(2sin x− cos x) = 0which gives two equationssin x = 0 2sin−cos x = 0
2sin x = cos x
2sin x
cos x=
cos x
cos x
2tan x = 1
tan x =^12Step 2 : Solve the two trigonometric equations
General solution:sin x = 0 [0◦]
∴ x = (180◦. n);n∈Ztan x =^12 [26, 57 ◦]
I;III : x = 26, 57 ◦+ (180◦. n);n∈ZSpecific solution in theinterval [− 360 ◦;360◦]:x =− 360 ◦;− 206 , 57 ◦;− 180 ◦;− 26 , 57 ◦;0◦;26, 57 ◦;180◦;206, 25 ◦;360◦