9.3 CHAPTER 9. GEOMETRY
The distance between the two points is:
r =
1
2
PQ =
1
2
�
(x 2 −x 1 )^2 + (y 2 −y 1 )^2
=
1
2
�
(5− (−5))^2 + (− 5 − 5)^2
=
1
2
�
(10)^2 + (−10)^2
=
1
2
√
100 + 100
=
�
200
4
=
√
50
Step 4 : Write the equation of the circle
x^2 +y^2 = 50
Example 4: Equation of a Circle II
QUESTION
Find the centre and radius of the circle
x^2 − 14 x +y^2 + 4y =− 28.
SOLUTION
Step 1 : Change to standard form
We need to rewrite theequation in the form (x−x 0 ) + (y−y 0 ) = r^2
To do this we need to complete the square
i.e. add and subtract (^12 cooefficient of x)^2 and (^12 cooefficient of y)^2
Step 2 : Adding cooefficients
x^2 − 14 x +y^2 + 4y =− 28
∴ x^2 − 14 x + (7)^2 − (7)^2 +y^2 + 4y + (2)^2 − (2)^2 =− 28
Step 3 : Complete the squares
∴ (x− 7)^2 − (7)^2 + (y + 2)^2 − (2)^2 =− 28
Step 4 : Take the constants to the other side
∴ (x− 7)^2 − 49 + (y + 2)^2 − 4 =− 28
∴ (x− 7)^2 + (y + 2)^2 =−28 + 49 + 4
∴ (x− 7)^2 + (y + 2)^2 = 25
Step 5 : Read the values from the equation