9.4 CHAPTER 9. GEOMETRY
Polar co-ordinates
�
r
yxαPNotice that sinα =yr∴ y = r sinα
and cosα =xr∴ x = r cosα
so P can be expressed in two ways:P (x;y) rectangular co-ordinatesor P (r;α) polar co-ordinates.Compound angles
(See derivation of formulae in Chapter 12)
sin (α +β) = sinα cosβ + sinβ cosα
cos (α +β) = cosα cosβ− sinα sinβNow consider P�after a rotation of θ
P (x;y) = P (r cosα;r sinα)
P�(r cos (α +θ);r sin (α +θ))Expand the co-ordinatesof P�
x− co-ordinate = r cos (α +θ)
= r [cosα cosθ− sinα sinθ]
= r cosα cosθ−r sinα sinθ
= x cosθ−y sinθy− co-ordinate = r sin (α +θ)
= r [sinα cosθ + sinθ cosα]
= r sinα cosθ +r cosα sinθ
= y cosθ +x sinθ�α� P = (r cosα;r sinα)P�θwhich gives the formula P�= [(x cosθ−y sinθ;y cosθ +x sinθ)].So to find the co-ordinates of P (1;
√
3) after a rotation of 45 ◦, we arrive at:P� = [(x cosθ−y sinθ); (y cosθ +x sinθ)]
=�
(1 cos 45◦−√
3 sin 45◦); (√
3 cos 45◦+ 1 sin 45◦)�
=
��
1
√
2
−
√
3
√
2
�
;
�√
3
√
2
+
1
√
2
��
=
�
1 −
√
3
√
2
;
√
3 + 1
√
2
�
Exercise 9 - 9