Everything Maths Grade 12

(Marvins-Underground-K-12) #1

9.4 CHAPTER 9. GEOMETRY


Polar co-ordinates



r
y

x

α

P

Notice that sinα =yr∴ y = r sinα
and cosα =xr∴ x = r cosα
so P can be expressed in two ways:

P (x;y) rectangular co-ordinates

or P (r;α) polar co-ordinates.

Compound angles


(See derivation of formulae in Chapter 12)


sin (α +β) = sinα cosβ + sinβ cosα
cos (α +β) = cosα cosβ− sinα sinβ

Now consider P�after a rotation of θ


P (x;y) = P (r cosα;r sinα)
P�(r cos (α +θ);r sin (α +θ))

Expand the co-ordinatesof P�


x− co-ordinate = r cos (α +θ)
= r [cosα cosθ− sinα sinθ]
= r cosα cosθ−r sinα sinθ
= x cosθ−y sinθ

y− co-ordinate = r sin (α +θ)
= r [sinα cosθ + sinθ cosα]
= r sinα cosθ +r cosα sinθ
= y cosθ +x sinθ


α

� P = (r cosα;r sinα)

P�

θ

which gives the formula P�= [(x cosθ−y sinθ;y cosθ +x sinθ)].

So to find the co-ordinates of P (1;



3) after a rotation of 45 ◦, we arrive at:

P� = [(x cosθ−y sinθ); (y cosθ +x sinθ)]
=


(1 cos 45◦−


3 sin 45◦); (


3 cos 45◦+ 1 sin 45◦)


=


��


1



2




3



2



;


�√


3



2


+


1



2


��


=



1 −



3



2


;



3 + 1



2



Exercise 9 - 9

Free download pdf