Everything Maths Grade 12

(Marvins-Underground-K-12) #1

CHAPTER 7. DIFFERENTIAL CALCULUS 7.2


point x = a.

SOLUTION

Step 1 : Calculating the gradient at a point
We know that the gradient at a point x is given by:

lim
h→ 0

f (x +h)−f (x)
h
In our case x = a. It is simpler to substitute x = a at the end of the calculation.

Step 2 : Write f (x +h) and simplify

f (x +h) = 5(x +h)^2 − 4(x +h) + 1
= 5(x^2 + 2xh +h^2 )− 4 x− 4 h + 1
= 5x^2 + 10xh + 5h^2 − 4 x− 4 h + 1

Step 3 : Calculate limit

lim
h→ 0

f (x +h)−f (x)
h

=


5 x^2 + 10xh + 5h^2 − 4 x− 4 h + 1− (5x^2 − 4 x + 1)
h

= lim
h→ 0

5 x^2 + 10xh + 5h^2 − 4 x− 4 h + 1− 5 x^2 + 4x− 1
h

= lim
h→ 0

10 xh + 5h^2 − 4 h
h

= lim
h→ 0

h(10x + 5h− 4)
h
= lim
h→ 0
10 x + 5h− 4
= 10x− 4

Step 4 : Calculate gradient at x = a

10 x− 4 = 10a− 4

Step 5 : Write the final answer
The gradient of the tangent to the curve f (x) = 5x^2 − 4 x + 1 at x = 1 is 10 a− 4.

Exercise 7 - 1


Determine the following


1.
lim
x→ 3

x^2 − 9
x + 3
2.
lim
x→ 3

x + 3
x^2 + 3x
Free download pdf