CHAPTER 7. DIFFERENTIAL CALCULUS 7.2
point x = a.
SOLUTION
Step 1 : Calculating the gradient at a point
We know that the gradient at a point x is given by:
lim
h→ 0
f (x +h)−f (x)
h
In our case x = a. It is simpler to substitute x = a at the end of the calculation.
Step 2 : Write f (x +h) and simplify
f (x +h) = 5(x +h)^2 − 4(x +h) + 1
= 5(x^2 + 2xh +h^2 )− 4 x− 4 h + 1
= 5x^2 + 10xh + 5h^2 − 4 x− 4 h + 1
Step 3 : Calculate limit
lim
h→ 0
f (x +h)−f (x)
h
=
5 x^2 + 10xh + 5h^2 − 4 x− 4 h + 1− (5x^2 − 4 x + 1)
h
= lim
h→ 0
5 x^2 + 10xh + 5h^2 − 4 x− 4 h + 1− 5 x^2 + 4x− 1
h
= lim
h→ 0
10 xh + 5h^2 − 4 h
h
= lim
h→ 0
h(10x + 5h− 4)
h
= lim
h→ 0
10 x + 5h− 4
= 10x− 4
Step 4 : Calculate gradient at x = a
10 x− 4 = 10a− 4
Step 5 : Write the final answer
The gradient of the tangent to the curve f (x) = 5x^2 − 4 x + 1 at x = 1 is 10 a− 4.
Exercise 7 - 1
Determine the following
1.
lim
x→ 3
x^2 − 9
x + 3
2.
lim
x→ 3
x + 3
x^2 + 3x