Step 2: Calculate the point of intersectionE
AtEthe two graphs intersect so we can equate the two expressions:
x 2 = x^2 + 4
)x^2 +x 6 = 0
)(x 2)(x+ 3) = 0
)x= 2or 3
AtE,x= 3 , thereforey=x 2 = 3 2 = 5. This gives the pointE( 3; 5).
Step 3: Calculate distanceCD
CD=CO+OD
= 4 + 2
= 6
DistanceCDis 6 units.
Step 4: Write the final answer
1.coordinates ofA( 2; 0),B(2; 0),C(0; 4),D(0; 2)
2.coordinates ofE( 3; 5)
3.distanceCD= 6units
Worked example 25: Interpreting trigonometric graphs
QUESTION
Use the sketch to determine the equation of the trigonometric functionfof the formy=af() +q.
M(90◦;^32 )
N(210◦; 0)
y
Chapter 6. Functions 211