Step 2: Assign values to(x 1 ;y 1 )and(x 2 ;y 2 )
Let the coordinates ofRbe(x 1 ;y 1 )and the coordinates ofSbe(x 2 ;y 2 ).
x 1 = 3 y 1 = 9 x 2 = 8 y 2 =y
Step 3: Write down the distance formula
d=
√
(x 1 x 2 )^2 + (y 1 y 2 )^2
Step 4: Substitute values and solve fory
13 =
√
(3 8)^2 + (9 y)^2
132 = ( 5)^2 +
(
81 18 y+y^2
)
0 =y^2 18 y 63
= (y+ 3) (y 21)
)y= 3 ory= 21
Step 5: Check both values fory
Checky= 3 :
d=
√
(x 1 x 2 )^2 + (y 1 y 2 )^2
=
√
(3 8)^2 + (9 + 3)^2
=
p
25 + 144
=
p
169
= 13
Checky= 21:
d=
√
(x 1 x 2 )^2 + (y 1 y 2 )^2
=
√
(3 8)^2 + (9 21)^2
=
p
25 + 144
=
p
169
= 13
Step 6: Write the final answer
Sis(8; 3)or(8; 21).
Thereforey= 3 ory= 21.
NOTE:
Drawing a sketch helps with your calculation and makes it easier to check if your answer is correct.
Chapter 8. Analytical geometry 291