Step 2: Assign values to(x 1 ;y 1 )and(x 2 ;y 2 )
Let the coordinates ofGbe(x 1 ;y 1 )and the coordinates ofHbe(x 2 ;y 2 )
x 1 = 7 y 1 = 9 x 2 =x y 2 = 0
Step 3: Write down the formula for gradient
m=
y 2 y 1
x 2 x 1
Step 4: Substitute values and solve for x
3 =
0 ( 9)
x 7
3 (x 7) = 9
x 7 =
9
3
x 7 = 3
x= 3 + 7
= 10
Step 5: Write the final answer
The coordinates ofHare(10; 0).
Thereforex= 10.
Exercise 8 – 3:
1.Find the gradient ofABif:
a) A(7; 10)andB( 4; 1) b)A( 5; 9)andB(3; 2) c) A(x 3;y)andB(x;y+ 4)
2.You are given the following diagram: