Everything Maths Grade 10

(Marvins-Underground-K-12) #1

Step 2: Assign values to(x 1 ;y 1 )and(x 2 ;y 2 )


Let the mid-point ofEGbeM(x;y)


x 1 = 1 y 1 = 0 x 2 = 8 y 2 = 11

Step 3: Write down the mid-point formula


M(x;y) =

(


x 1 +x 2
2

;


y 1 +y 2
2

)


Step 4: Substitute values calculate the coordinates ofM


M(x;y) =

(


1 + 8


2


;


0 + 11


2


)


=


(


7


2


;


11


2


)


Step 5: Use the coordinates ofMto determineH


Mis also the mid-point ofF Hso we useM


(


7


2


;


11


2


)


andF(0; 3)to solve forH(x;y).

Step 6: Substitute values and solve forxandy


7
2

=


0 +x
2

11


2


=


3 +y
2
7 =x+ 0 11 = 3 +y
x = 7 y = 8

Step 7: Write the final answer


The coordinates ofHare(7; 8).


Exercise 8 – 5:

1.Calculate the coordinates of the mid-point (M) between pointA( 1 ; 3 )and pointB( 3 ; 3 )in the fol-
lowing diagram:

 2  1 1 2 3 4

 4

 3

 2

 1

1

2

3

4
A(1; 3)

B(3;3)

M(x;y)
x

y

Chapter 8. Analytical geometry 313
Free download pdf