21.7 CHAPTER 21. MOTION IN ONE DIMENSION
- Acceleration (~a) is the change in velocity (∆~v) over a time interval (∆t):
~a=∆∆~vt
- The gradient of a position - time graph (xvs.t) gives the velocity.
- The gradient of a velocity - time graph (vvs.t) gives the acceleration.
- The area under a velocity - time graph (vvs.t) gives the displacement.
- The area under an acceleration - time graph (avs.t) gives the velocity.
- The graphs of motion are summarised in Figure 21.3.
- The equations of motion are used where constant acceleration takes place:
vf = vi+at
∆~x = (vi+ 2 vf)t
∆~x = vit+^12 at^2
~v^2 f = ~v^2 i+ 2a∆~x
Physical Quantities
Quantity Vector Unit name Unit symbol
Position (x) - metre m
Distance (D) - metre m
Displacement (∆~x) X metre m
Speed (vav) - metre per second m·s−^1
Average velocity (~vav) X metre per second m·s−^1
Instantaneous velocity (~v) X metre per second m·s−^1
Instantaneous speed (v) - metre per second m·s−^1
Instantaneous acceleration (~a) X metre per second per second m·s−^2
Average acceleration (~aav) X metre per second per second m·s−^2
Magnitude of acceleration (a) - metre per second per second m·s−^2
Table 21.1: Units used inmotion in one dimension
436 Physics: Mechanics