Chapter 6 FaCtoring and the distributive ProPerty 1715.^3
2448
7
6241
42024
2
2467
6xx^22 xxxxx x+−+
−−
+−
=
−++
()()( −−−
4 +−1
)( 46 xx)( 1 )
LCD = 12(x − 4)(x + 6)(x − 1)6.^24
71269
24(^223433)
x
xx
x
xx
x
xx
x
xx
−
−+
−
−+
= −
−−
−
()()()−−( ))
LCD = (x − 3)(x − 3)(x − 4) = (x − 3)^2 (x − 4)
7.^67
5
3 67
53(^221)
x
x
x
x
−
−
+= −
−
- LCD = x^2 − 5
Once we find the LCD, we rewrite each fraction in terms of the LCD, that
is, we multiply each fraction by the “missing” factors over themselves. Once we
do this, each fraction has the same denominator, so we can add or subtract the
numerators.
EXAMPLES
Find the sum or difference.
1
23 9
1
xx^223133
x
xxx
x
+− xx
−
+−
()()()−+()
LCD = (x + 3)(x − 1)(x − 3)
The factor x – 3 is “missing” in the first denominator so multiply the first
fraction by x
x
−
−
3
3
. An x – 1 is “missing” from the second denominator so
multiply the second fraction by x
x
−
−1
1.1
313
3331
1
3
3()() ()()()(xxx
xx
xxx
x
x
x+−⋅ −
−+
−+⋅ −
−
= −
+ xxxxx
−−xxx+ −
13 +−−1
)( ) 313()
()()()xxx
xxxxxx
xxx−+ −
+−−= −+ −
+−−31
3133
31()^2
()()()()()( 333
3132
)( )( )( )= −
+−−x
xxxEXAMPLES
Find the sum or difference.