- RADICAL EXPRESSIONS AND QUADRATIC EQUATIONS–
639.Solve using the quadratic formula:
^16 x^2 – ^53 x+1 = 0
a.–5 19 
b. 5  19 
c. 5 i 19 
d.–5i 19 640.Solve using the quadratic formula:
(x– 3)(2x+ 1) = x(x– 4)a.b.c.d.Set 41 (Answers begin on page 222)
Solving quadratic equations using radical and graphical
methods is the focus of this problem set.
641.Solve using radical methods: 4x^2 = 3
a. ^32
b. ^23
c.i ^32
d.i ^23
642.Solve using radical methods: –3x^2 = –9
a.  3 i
b. 3
c. 3 
d.i 3 
643.Solve using radical methods: (4x+ 5)^2 = –49
a.b.c.d.644.Solve using radical methods: (3x– 8)^2 = 45a.b.c.d.645.Solve using radical methods: (–2x+ 1)^2 – 50 =0a.b.c.d.646.Solve using radical methods: –(1 – 4x)^2 – 121 = 0a.b.c.d.647.Find the real solutions of the following equa-
tion, if they exist, using graphical methods:
5 x^2 – 24 = 0
a. ≈2.191
b. 4.8
c. ≈ 2.191
d.The solutions are imaginary.648.Find the real solutions of the following equa-
tion, if they exist: 2x^2 = –5x– 4
a.0.5, 1.5
b.–1.5, 0
c.–0.5, 0.5
d.The solutions are imaginary.–1i^11 
4^1 i^11 
4^1 ^11 i
4–1^11 i
4–1^5 i^2 
2^1 ^5 ^2 
2^1 ^5 i^2 
2–1^5 ^2 
2–8^3 i^5 
3^8 ^3 ^5 
3–8^3 ^5 
3–8^3 i^5 
3^7 ^5 i
4–7^5 i
4–5^7 i
4^5 ^7 i
4–1i^13 
2^1 i^13 
2^1 ^13 
2–1^13 
2