- b.
–2^2 (2–3– 2–2x^2 ) + 3^3 (3–2– 3–3x^3 )
= –4 21 3 – x^2 + 27 31 2 – 313 x^3
= –4^18 – ^14 x^2 + 27^19 – 217 x^3
= –^12 + x^2 + 3 – x^3
= –x^3 + x^2 + ^52
Set 24 (Page 67)
- a.
(3x^3 ) (7x^2 ) = (37) (x^3 x^2 ) = 21(x3+2) = 21x^5 - c. 2 x(5x^2 + 3y) = 2x(5x^2 ) + 2x(3y) = 10x^3 + 6xy
- a.x^3 + 6x= x x^2 + 6x= x(x2 + 6)
- b. 2 x^2 (3x+ 4xy– 2xy^3 ) = 2x^2 (3x) + 2x^2 (4xy)
- 2x^2 (2xy^3 ) = 6x^3 + 8x^3 y– 4x^3 y^3
- d.
7 x^5 (x^8 + 2x^4 – 7x–9)
= 7x^5 (x^8 ) + 7x^5 (2x^4 ) – 7x^5 (7x) – 7x^5 (9)
= (7) (x^5 x^8 ) + (72) (x^5 x^4 ) – (77) (x^5 x) –
(79) (x^5 )
= 7x^13 + 14x^9 – 49x^6 – 63x^5
- c.
4 x^2 z(3xz^3 – 4z^2 + 7x^5 )
= 4x^2 z(3xz^3 )+ 4x^2 z(–4z^2 ) + 4x^2 z(7x^5 )
= 12x^3 z^4 – 16x^2 z^3 + 28x^7 z - c.To find the product of two binomials, mul-
tiply the first term of each binomial, the out-
side terms, the inside terms, and the last terms
(FOIL). Then, add the products:
(x– 3)(x+ 7) = x^2 + 7x– 3x– 21 = x^2 + 4x– 21
- d.Use FOIL to find the product of two bino-
mials. Then, add the products:
(x– 6)(x– 6) = x^2 – 6x– 6x+ 36 = x^2 – 12x+ 36
- a.To find the product of two binomials, mul-
tiply the first term of each binomial, the outside
terms, the inside terms, and the last terms.
Then, add the products:
(x– 1)(x+ 1) = x^2 + x– x– 1 = x^2 – 1
- e.First, note that (x+ c)^2 = (x+ c)(x+ c).
Then, use FOIL to find the product of the two
binomials. Finally, add the products:
(x+ c)(x+ c) = x^2 + cx+ cx+ c^2 = x^2 + 2cx+ c^2
- b.To find the product of two binomials, mul-
tiply the first term of each binomial, the out-
side terms, the inside terms, and the last terms.
Then, add the products:
(2x+ 6)(3x– 9) = 6x^2 – 18x+ 18x– 54 = 6x^2 – 54
- e.Begin by multiplying the first two terms:
–3x(x+ 6) = –3x^2 – 18x. Then, multiply the
two binomials, –3x^2 – 18xand x– 9:
(–3x^2 – 18x)(x– 9) = –3x^3 + 27x^2 – 18x^2 +
162 x= –3x^3 + 9x^2 + 162 x
- c.
(x– 4) (3x^2 + 7x– 2)
= x(3x^2 + 7x– 2) – 4(3x^2 + 7x– 2)
= x(3x2)+ x(7x) – x(2) – 4(3x^2 ) –4(7x) – 4(–2)
= 3x^3 + 7x^2 – 2x– 12x^2 – 28x+ 8
= 3x^3 – 5x^2 – 30x+ 8 - e.Begin by multiplying the first two terms:
(x– 6)(x– 3) = x^2 – 3x– 6x+ 18 = x^2 – 9x+ 18
Then, multiply (x^2 – 9x+ 18) by (x– 1):
(x^2 – 9x+ 18)(x– 1) = x^3 – 9x^2 + 18x– x^2 +
9 x– 18 = x^3 – 10x^2 + 27x– 18
^1
22
ANSWERS & EXPLANATIONS–