Systems of Equations 209
2 x + 2 = 4
2 x = 2
2
22
2
x
=x= 1Step 5. Check whether x = 1 and y = −2 satisfy both original equations.
24
23xy
xy+ 2222224
2 1 43
() 1 ()=+ 2 2
() 1 2 () 1 −
Check. √Step 6. Write the solution.
The solution is x = 1 and y = −2. That is, the two lines intersect at
the point (1, −2).Problem Solve the system.
523
23 1xy 2
xy 322 y=
33 y=−Solution
Step 1. To eliminate y, multiply the fi rst equation by 3 and the second equa-
tion by − 2.
523
23 1xy 2
xy 322 y=
33 y=−MultiplybyMultiplyby32⎯→⎯⎯Multiplyby^3 →→
⎯→⎯→⎯→M lti lb− 215 69
462
xy 6
xy 6+ 66
− 4 =
Step 2. Add the resulting two equations.
15 69
462
11 11xy 6
xy 6
x+ 66
− 4 =
=
Step 3. Solve 11x= 11 for x.
11 x= 11
11
1111
11
x
=x = 1