MA 3972-MA-Book May 7, 2018 9:52Limits and Continuity 856.1 The Limit of a Function
Main Concepts:Definition and Properties of Limits, Evaluating Limits, One-Sided Limits,
Squeeze TheoremDefinition and Properties of Limits
Definition of Limit
Let f be a function defined on an open interval containinga, except possibly ataitself.
Then limx→af(x)=L(read as the limit of f(x)asxapproachesaisL) if for anyε>0, there
exists aδ>0 such that|f(x)−L|<εwhenever|x−a|<δ.Properties of Limits
Given limx→a f(x)=Land limx→ag(x)=MandL,M,a,c, andnare real numbers, then:- limx→ac=c
- limx→a[cf(x)]=cxlim→a f(x)=cL
- limx→a[f(x)±g(x)]=xlim→a f(x)±xlim→ag(x)=L+M
- limx→a[f(x)·g(x)]=xlim→a f(x)·xlim→ag(x)=L·M
- limx→a
f(x)
g(x)
=
xlim→a f(x)
xlim→ag(x)=
L
M
,M= 0
- limx→a[f(x)]n=
(
xlim→a f(x))n
=LnEvaluating Limits
Iffis a continuous function on an open interval containing the numbera, then limx→af(x)=
f(a).Common techniques in evaluating limits are:
STRATEGY- Substituting directly
- Factoring and simplifying
- Multiplying the numerator and denominator of a rational function by the conjugate of
either the numerator or denominator - Using a graph or a table of values of the given function
Example 1
Find the limit: limx→ 5√
3 x+1.Substituting directly: limx→ 5√
3 x+ 1 =√
3(5)+ 1 =4.