MA 3972-MA-Book April 11, 2018 17:21
Graphs of Functions and Derivatives 161(–4, 6)(3, 2)f(x)yx- 42 – 3 – 2 – 1 10 3
Figure 8.4-5Example 5
Iff(x)=
∣∣
ln(x+1)∣∣
, find lim
x→ 0 −f′(x). (See Figure 8.4-6.)[–2, 5] by [–2, 4]
Figure 8.4-6The domain offis (−1,∞).
f(0)=∣∣
ln(0+1)∣∣
=∣∣
ln(1)∣∣
= 0f(x)=∣∣
ln(x+1)∣∣
={
ln(x+1) ifx≥ 0
−ln(x+1) ifx< 0Thus,f′(x)=
⎧
⎪⎪⎨⎪⎪⎩1
x+ 1ifx≥ 0−1
x+ 1
ifx< 0Therefore, lim
x→ 0 −
f′(x)=lim
x→ 0 −(
−1
x+ 1)
=−1.