MA 3972-MA-Book April 11, 2018 14:46192 STEP 4. Review the Knowledge You Need to Score High
- (Calculator) At what value(s) ofxdoes the
tangent to the curvex^2 +y^2 =36 have a
slope of−1?
25. (Calculator) Find the shortest distance
between the point (1, 0) and the curve
y=x^3.
9.6 Solutions to Practice Problems
Part A The use of a calculator is not
allowed.- Volume:V=
4
3
πr^3 ;Surface Area: S= 4 πr^2
dS
dt
= 8 πrdr
dt.
SincedS
dt= 8
dr
dt,
8
dr
dt
= 8 πrdr
dt
⇒ 8 = 8 πrorr=1
π.
Atr=1
π,V=
4
3
π(
1
π) 3
=4
3 π^2
cubic
units.- Pythagorean Theorem yields
x^2 +y^2 =(13)^2.
Differentiate: 2x
dx
dt- 2 y
dy
dt
- 2 y
= 0 ⇒
dy
dt
=
−x
ydx
dt.
Atx=5, (5)^2 +y^2 = 132 ⇒y=±12, since
y>0,y=12.
Therefore,
dy
dt=−
5
12
(−2) ft/sec=5
6
ft/sec.The ladder is moving away from the wall
at5
6
ft/sec when the top of the ladder is
5 feet from the ground.- Volume of a sphere isV=
4
3
πr^3.Differentiate:
dV
dt=
(
4
3)
(3)πr^2
dr
dt
= 4 πr^2
dr
dt.
Substitute: 100= 4 π(5)^2
dr
dt⇒
dr
dt=
1
π
cm/sec.
Letxbe the diameter. Since
x= 2 r,dx
dt= 2
dr
dt.
Thus,
dx
dt∣∣
∣∣
r= 5= 2
(
1
π)
cm/sec=2
π
cm/sec. The diameter is increasing at
2
π
cm/sec when the radius is 5 cm.- (See Figure 9.6-1.) Using similar triangles,
withythe length of the shadow, you have:
5
20
=
y
y+x
⇒ 20 y= 5 y+ 5 x⇒15 y= 5 xory=
x
3.
Differentiate:
dy
dt=
1
3
dx
dt⇒
dy
dt=
1
3
(6)
=2ft/sec.5 ft20 ftyxLightFigure 9.6-1- (See Figure 9.6-2.) Volume of a cone
V=1
3
πr^2 h.Using similar triangles, you have
12
18=
r
h
⇒ 2 h= 3 rorr=2
3
h, thusreducing the equation toV=1
3
π(
2
3
h) 2
(h)=
4 π
27
h^3.