MA 3972-MA-Book April 11, 2018 14:46
Applications of Derivatives 199
- (See Figure 9.6-12.)
y
y
x (x, 0)
(0, y) (0.5, 4)
x
l
0
Figure 9.6-12
Step 1: Distance formula:
l^2 =x^2 +y^2 ;x> 0 .5 andy>4.
Step 2: The slope of the hypotenuse:
m=
y− 4
0 − 0. 5
=
− 4
x− 0. 5
⇒(y−4)(x− 0 .5)= 2
⇒xy− 0. 5 y− 4 x+ 2 = 2
y(x− 0 .5)= 4 x
y=
4 x
x− 0. 5
.
Step 3: l^2 =x^2 +
(
4 x
x− 0. 5
) 2
;
l =±
√
x^2 +
(
4 x
x− 0. 5
) 2
Sincel>0,l=
√
x^2 +
(
4 x
x− 0. 5
) 2
.
Step 4: Entery 1 =
√
x^2 +
(
4 x
x− 0. 5
) 2
and use the [Minimum] function
of the calculator and obtain
x= 2 .5.
Step 5: Apply the First Derivative Test.
Entery 2 =d(y1(x),x) and use
the [Zero] function and obtain
x= 2 .5.
Note that:
3
f′ – 0 +
f decr.
rel. min.
incr.
Sincefhas only one relative
extremum, it is the absolute
extremum.
Step 6: Thus, atx= 2 .5, the length of the
hypotenuse is the shortest. At
x= 2 .5,y=
4(2.5)
2. 5 − 0. 5
=5. The
vertices of the triangle are
(0, 0), (2.5, 0), and (0, 5).
9.7 Solutions to Cumulative Review Problems
- Rewrite:y=[sin(cos( 6 x− 1 ))]^2
Thus,
dy
dx
= 2 [sin(cos( 6 x− 1 ))]
×[cos(cos( 6 x− 1 ))]
×[−sin(6x−1)](6)
=−12 sin(6x−1)
×[sin(cos( 6 x− 1 ))]
×[cos(cos( 6 x− 1 ))].
- Asx→∞, the numerator
100
x
approaches 0 and the denominator
increases without bound (i.e.,∞).
Thus, the limx→∞
100 /x
− 4 +x+x^2