MA 3972-MA-Book May 8, 2018 13:52Integration 241Example 9
Evaluate∫
x^35 (x(^4) )
dx.
Step 1: Letu=x^4.
Step 2: Differentiate:du= 4 x^3 dx⇒
du
4
=x^3 dx.
Step 3: Rewrite:
∫
5 u
du
4
=
1
4
∫
5 udu.Step 4: Integrate:1
4
( 5 u)
ln 5+C.
Step 5: Replaceu:
5 x^4
4ln5+C.
Step 6: Differentiate and Check:5 (x^4 )(
4 x^3)
ln 5
4ln5
=x^35 (x(^4) )
.
Example 10
Evaluate
∫
(sinπx)ecosπxdx.
Step 1: Letu=cosπx.
Step 2: Differentiate:du=−πsinπxdx;−
du
π
=sinπxdx.
Step 3: Rewrite:
∫
eu
(
−du
π
)
=−
1
π∫
eudu.Step 4: Integrate:−1
π
eu+C.Step 5: Replaceu:−1
π
ecosπx+C.Step 6: Differentiate and Check:−1
π
(ecosπx)(−sinπx)π=(sinπx)ecosπx.11.3 Rapid Review
- Evaluate
∫
1
x^2
dx.Answer:Rewrite as∫
x−^2 dx=
x−^1
− 1+C=−
1
x+C.
- Evaluate
∫
x^3 − 1
x
dx.Answer:Rewrite as∫ (
x^2 −1
x)
dx=
x^3
3
−ln|x|+C.- Evaluate
∫
x√
x^2 − 1 dx.