5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 8, 2018 13:52

Integration 245


  1. Letu=


1


x
;du=

− 1


x^2
dxor−du

=

1


x^2
dx.

Rewrite:


sec^2 u(−du)=−


sec^2 udu

=−tanu+C
=−tan

(
1
x

)
+C.


  1. Rewrite:



e(2x+^4 x)dx=


e^6 xdx.

Letu= 6 x;du= 6 dxor

du
6
=dx.

Rewrite:


eu
du
6

=


1


6



eudu

=


1


6


eu+C=

1


6


e^6 x+C.


  1. Letu=lnx;du=


1


x
dx.

Rewrite:


1
u
du=ln|u|+C

=ln|lnx|+C.


  1. Sinceexand lnxare inverse functions:

    ln


(
e^5 x+^1

)
dx=


(5x+1)dx

=


5 x^2
2
+x+C.


  1. Rewrite:


∫ (
e^4 x
ex


1


ex

)
dx

=


∫ (
e^3 x−e−x

)
dx

=


e^3 xdx−


e−xdx.
Letu= 3 x;du= 3 dx;

e^3 xdx=


eu

(
du
3

)
=

1


3


eu+C 1

=

1


3


e^3 x+C.
Letv=−x;dv=−dx;

e−xdx=


ev(−dv)=ev+C 2
=−e−x+C 2

Thus,


e^3 xdx−


e−xdx

=

1


3


e^3 x+e−x+C.

Note thatC 1 and C 2 are arbitrary
constants, and thus,C 1 +C 2 =C.


  1. Rewrite:∫
    (9−x^2 )x^1 /^2 dx=


∫ (
9 x^1 /^2 −x^5 /^2

)
dx

=
9 x^3 /^2
3 / 2


x^7 /^2
7 / 2

+C


= 6 x^3 /^2 −
2 x^7 /^2
7

+C.



  1. Letu= 1 +x^3 /^2 ;du=


3


2


x^1 /^2 dxor
2
3
du=x^1 /^2 dx=


xdx.

Rewrite:


u^4

(
2
3

du

)
=

2


3



u^4 du

=


2


3


(
u^5
5

)
+C=

2


(
1 +x^3 /^2

)

15

5
+C.


  1. Since
    dy
    dx


=ex+2, theny=

(ex+ 2 )dx=ex+ 2 x+C.
The point (0, 6) is on the graph ofy.
Thus, 6=e^0 +2(0)+C⇒ 6 = 1 +Cor
C=5. Therefore,y=ex+ 2 x+5.


  1. Letu=ex;du=exdx.
    Rewrite:− 3



sin(u)du=−3(−cosu)+C
=3 cos(ex)+C.


  1. Letu=ex+e−x;du=(ex−e−x)dx.
    Rewrite:



1
u
du=ln|u|+C
=ln|ex+e−x|+C
or=ln

∣∣
∣∣ex+^1
ex

∣∣
∣∣+C

=ln

∣∣
∣∣e

2 x+ 1
ex

∣∣
∣∣+C

=ln|e^2 x+ 1 |−ln|ex|+C
=ln|e^2 x+ 1 |−x+C.
Free download pdf