MA 3972-MA-Book April 11, 2018 15:57
254 STEP 4. Review the Knowledge You Need to Score High
Set 2k^2 +k− 6 = 30 ⇒ 2 k^2 +k− 36 = 0
⇒(2k+9)(k−4)=0ork=−
9
2
ork= 4.
Sincek>0,k= 4.
Example 4
Iff′(x)=g(x), andgis a continuous function for all real values ofx, express
∫ 5
2
g(3x)dx
in terms off.
Letu= 3 x;du= 3 dxor
du
3
=dx.
∫
g(3x)dx=
∫
g(u)
du
3
=
1
3
∫
g(u)du=
1
3
f(u)+C
=
1
3
f(3x)+C
∫ 5
2
g(3x)dx=
1
3
f(3x)
] 5
2
=
1
3
f(3(5))−
1
3
f(3(2))
=
1
3
f(15)−
1
3
f(6)
Example 5
Evaluate
∫ 4
0
1
x− 1
dx.
Note that you cannot evaluate using the First Fundamental Theorem of Calculus since
f(x)=
1
x− 1
is discontinuous atx=1.
Example 6
Using a graphing calculator, evaluate
∫ 2
− 2
√
4 −x^2 dx.
Using a TI-89 graphing calculator, enter
∫(√
( 4 −x∧ 2 ), x, −2, 2
)
and obtain 2π.
Second Fundamental Theorem of Calculus
Iff is continuous on [a,b] andF(x)=
∫x
a
f(t)dt, thenF′(x)=f(x) at every pointxin
[a,b].