MA 3972-MA-Book April 11, 2018 15:57
Def inite Integrals 261
Definite Integrals Involving Odd and Even Functions
Iff is an even function, that is,f(−x)=f(x), and is continuous on [−a,a], then
∫a
−a
f(x)dx= 2
∫a
0
f(x)dx.
Iff is an odd function, that is,F(x)=−f(−x), and is continuous on [−a,a], then
∫a
−a
f(x)dx= 0.
Example 1
Evaluate
∫π/ 2
−π/ 2
cosxdx.
Sincef(x)=cosxis an even function,
∫π/ 2
−π/ 2
cosxdx= 2
∫π/ 2
0
cosxdx= 2 [sinx]π/ 02 = 2
[
sin
(
π
2
)
−sin( 0 )
]
= 2 ( 1 − 0 )=2.
Verify your result with a calculator.
Example 2
Evaluate
∫ 3
− 3
(
x^4 −x^2
)
dx.
Sincef(x)=x^4 −x^2 is an even function, i.e., f(−x)=f(x), thus
∫ 3
− 3
(
x^4 −x^2
)
dx= 2
∫ 3
0
(
x^4 −x^2
)
dx= 2
[
x^5
5
−
x^3
3
] 3
0
= 2
[(
35
5
−
33
3
)
− 0
]
=
396
5
.
Verify your result with a calculator.
Example 3
Evaluate
∫π
−π
sinxdx.
Sincef(x)=sinxis an odd function, i.e.,f(−x)=−f(x), thus
∫π
−π
sinxdx=0.
∫ Verify your result algebraically.
π
−π
sinxdx=−cosx
]π
−π=(−cosπ)−[−cos(−π)]
=[−(− 1 )]−[−( 1 )]=( 1 )−( 1 )= 0
You can also verify the result with a calculator.