5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 15:57

Def inite Integrals 263


  1. IfG(x) is an antiderivative of (ex+1) andG(0)=0, findG(1).
    Answer: G(x)=ex+x+C
    G(0)=e^0 + 0 +C= 0 ⇒C=−1.
    G(1)=e^1 + 1 − 1 =e.

  2. IfG′(x)=g(x), express


∫ 2

0

g(4x)dxin terms ofG(x).

Answer: Letu= 4 x;
du
4
=dx.

g(u)
du
4

=


1


4


G(u).Thus,

∫ 2

0

g( 4 x)dx=

1


4


G( 4 x)

] 2

0

=


1


4


[G(8)−G(0)].


12.5 Practice Problems


Part A The use of a calculator is not
allowed.

Evaluate the following definite integrals.

1.


∫ 0

− 1

(1+x−x^3 )dx

2.


∫ 11

6

(x− 2 )^1 /^2 dx

3.


∫ 3

1

t
t+ 1
dt

4.


∫ 6

0

∣∣
x− 3

∣∣
dx


  1. If


∫k

0

(6x−1)dx=4, findk.

6.


∫π

0

sinx

1 +cosx

dx


  1. Iff′(x)=g(x) andgis a continuous
    function for all real values of∫ x, express
    2
    1


g(4x)dxin terms off.

8.


∫ln 3

ln 2

10 exdx

9.


∫e 2

e

1


t+ 3
dt


  1. If f(x)=


∫x

−π/ 4

tan^2 (t)dt, findf′

(
π
6

)
.

11.


∫ 1

− 1

4 xex
2
dx

12.


∫π

−π

(
cosx−x^2

)
dx

Part B Calculators are allowed.


  1. Findkif


∫ 2

0

(
x^3 +k

)
dx= 10.


  1. Evaluate


∫ 3. 1

− 1. 2

2 θcosθdθto the nearest
100th.


  1. Ify=


∫x 3

1


t^2 + 1 dt, find
dy
dx

.



  1. Use a midpoint Riemann sum with four
    subdivisions of equal length to find the


approximate value of

∫ 8

0

(
x^3 + 1

)
dx.


  1. Given


∫ 2

− 2

g(x)dx= 8

and

∫ 2

0

g(x)dx=3, find
Free download pdf