MA 3972-MA-Book April 11, 2018 16:1
272 STEP 4. Review the Knowledge You Need to Score High
Example 1
IfF(x)=
∫x
0
2 costdtfor 0≤x≤ 2 π, find the value(s) ofxwherefhas a local minimum.
Method 1: Sincef(x)=
∫x
0
2 costdt, f′(x)=2 cosx.
Setf′(x)=0; 2 cosx=0,x=
π
2
or
3 π
2
.
f′′(x)=−2 sinxand f′′
(
π
2
)
=−2 and f′′
(
3 π
2
)
=2.
Thus, atx=
3 π
2
, fhas a local minimum.
Method 2: You can solve this problem geometrically by using area. (See Figure 13.1-3.)
[0, 2π] by [–3, 3]
Figure 13.1-3
The area “under the curve” is above thet-axis on [0,π/2] and below thex-axis
on[π/2, 3π/ 2 ]. Thus, the local minimum occurs at 3π/2.
Example 2
Letp(x)=
∫x
0
f(t)dtand the graph of fis shown in Figure 13.1-4.
t
y
f(t)
(^0) 12 345678
- 4
4
Figure 13.1-4