MA 3972-MA-Book April 11, 2018 16:1
278 STEP 4. Review the Knowledge You Need to Score High
Or, using
∑
notation:
∑^5
i= 1
f(xi)Δxi=
∑^5
i= 1
f(4+i)(1)=
∑^5
i= 1
√
4 + 1.
Enter
∑(√
( 4 +x),x,1,5
)
and obtain 13.160.
Thus, the area under the curve is approximately 13.160.
Example 3
The functionfis continuous on [1, 9] and f >0. Selected values offare given below:
x 1 2 3 4 5 6 7 8 9
f(x) 1 1.41 1.73 2 2.37 2.45 2.65 2.83 3
Using 4 midpoint rectangles, approximate the area under the curve off forx=1tox=9.
(See Figure 13.2-4.)
I
II III
IV
10
1
2
3
2 3 45 67 89
y
x
f
Figure 13.2-4
LetΔxibe the length of theith rectangle. The lengthΔxi=
9 − 1
4
= 2.
Area of RectI= f(2)(2)=(1.41)2= 2. 82.
Area of RectII= f(4)(2)=(2.00)2= 4.
Area of RectIII= f(6)(2)=(2.45)2= 4. 90.
Area of RectIV= f(8)(2)=(2.83)2= 5. 66.
Area of (RectI+RectII+RectIII+RectIV)= 2. 82 + 4. 00 + 4. 90 + 5. 66 = 17 .38.
Thus, the area under the curve is approximately 17.38.